NASAGSFCSum2005

Download Report

Transcript NASAGSFCSum2005

Goddard Space Flight Center
Summer Tasks on UAV Radar
Under supervision of:
Shannon Rodríguez
Lihua Li
Gerry Heymsfield
Manuel A. Vega-Cartagena
UPRM Graduate Student
Objective
2

NASA IDEAS-ER grant received.

Develop a background on radar design while
contributing to the UAV project.
Manuel A. Vega-Cartagena
UAV Radar Project
3

The planned radar will have
capabilities of ER-2 Doppler
Radar (EDOP).

Nadir beam for vertical winds
and precipitation structure.

Conical beam for ocean surface
winds and surveillance of the
precipitation regions of the
storm.
Manuel A. Vega-Cartagena
Tasks
4

Study radar literature.

Redesign UAV’s nadir sub-system RF front end block diagram.

Help bench test UAV’s conical sub-system Tx and Rx paths.

Design 80MHz/5MHz clock PCB.

Design a PCB for UAV’s Vicor power modules.
Manuel A. Vega-Cartagena
UAV’s RF Front End Block Diagram

5
Requirements
–
Magnetron frequency = 9.345 GHz
–
Intermediate frequency = 60 MHz
–
Calibration noise injection loop
–
Receiver noise figure calculations
Manuel A. Vega-Cartagena
UAV’s RF Front End Block Diagram
6
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB

7
Requirements
–
Single 10MHz sine wave input.
–
80MHz and 5MHz TTL clock outputs for DAQ card.
–
Four amplified analog sensing lines.
–
Low profile components.
–
PMC daughter card format.
–
Original circuit design done by Shannon Rodríguez.
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB
Clock Block Diagram:
5V
10 MHz
10 MHz
40 MHz
Frequency Multiplier
AV9170
-5V
8
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB

PCB Construction
–
–
Board schematic and
layout done with Orcad
software.
Built using router in
building 22.
D-Sub 15
Sense Lines
SOIC
Components
Mezzanine
Connectors
9
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB

Board Testing
–
–
–
10
CPCISYS carrier board with daughter card.
Only DC Power from carrier board used.
Still undergoing debugging process.
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB

Test Results
–
80MHz Clock Signal
~1.3V
80MHz TTL Clock Signal
1.6
1.4
1.2
Voltage (V)
1
0.8
0.6
0.4
0.2
-1.50E-07
-1.00E-07
-5.00E-08
0
0.00E+00
5.00E-08
1.00E-07
1.50E-07
Time (s)
11
~0.4V
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB

5MHZ Clock Signal SMA
5MHz TTL Clock Signal
~1.6V
2
1.8
1.6
1.4
Voltage (V)
1.2
1
0.8
0.6
0.4
0.2
-5.00E-07
-4.00E-07
-3.00E-07
-2.00E-07
-1.00E-07
0
0.00E+00
1.00E-07
2.00E-07
3.00E-07
4.00E-07
5.00E-07
Time (s)
12
~0.1V
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB
Sensing Lines
R4
R
R
3
1
5
4
R
0
13
6
+
R
R3
-
2
LM32 4/S O
11
R1
Vin
R2
U1A
0
LM32 4/S O
7
4
–
11
–
Two additional lines were added.
Two inverting amplifier stages.
Gain values were changed.
+
–
-

Vout
U2B
Manuel A. Vega-Cartagena
80MHz / 5MHz PCB

–
–
–
14
Sense Line
Output
Voltage
(Vpp)
Voltage
Gain
1
19.53
1.953
2
20.31
2.031
3
19.53
1.953
4
19.53
1.953
Sense Lines
Tested using 10Vpp 1kHz
sine wave.
Theoretical voltage gain
value = 2.25.
Gain variations may be
caused by tolerance in
resistances.
Manuel A. Vega-Cartagena
Vicor Power Modules PCB

15
Requirements
–
Eliminate wire connections
between modules.
–
Reduce mounting time.
–
Only one board for both +/voltage configurations.
–
Output voltages should be
accessible and easy to
change(+/- 5V, +/-12V, +/15V).
Manuel A. Vega-Cartagena
Vicor Power Modules PCB
Power modules PCB.
5
6
+S ou t
+OUT
7
NC
8
9
-OUT
0
+IN
4
-Si n
3
+S
C4
CAP
OUT+
C3
CAP
Tri m
1
Wire connections
elimination.
+S i n
V I-RA M-I2
U2
OUT-

-So ut
Voltage selection
jumper and output.
-IN

To Power Distribution Matrix
0
2
–
1
2
3
4
Design Schematic
-S

J3
+/- OUT
0
J2
2
1
IN+
Gate IN
Bypass capacitors.
IN-

Gate OUT
V ic or DC-DC Conve rte r
U1
To Plate Screw
GND
0
16
Chassis ground
connection.
0
C1
CAP
2
1

C2
CAP
0
From Power Distribution Matrix
J1
+2 8V
Manuel A. Vega-Cartagena
Vicor Power Modules PCB

PCB Construction
–
Maximum load currents calculation.
 Imax




–
Components selection.

17
= 5 A @+24VIN for 5V module.
12V and 15V modules have lower output currents.
Track widths for 10°C temperature increase = 110 mils.
Track clearances for +28V = 29 mils.
Entire design done using standard low-cost 1oz. Cu thickness
board.
Connectors with unexposed contacts.
Manuel A. Vega-Cartagena
Vicor Power Modules PCB

Finished Board
+28V Input
Output and Voltage
Selection Jumper
Chassis Ground
18
Manuel A. Vega-Cartagena
Vicor Power Modules PCB

Power Distribution Matrix
–
–
Used to eliminate barrier
block.
Makes output voltages more
accessible and easy to
change.
To Components
From Powe r Modules
From Aircraft
To Power Modules
From Power Modules
J4
+5 V
From Airc raft
J8
+2 8V
2
1
1
2
To Compon ents
J5
J9
+2 8V
1
2
2
1
-5V
1
2
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
J1 0
+2 8V
J1 7
CON6 A
1
3
5
J1 6
CON6 A
1
3
5
J1 5
CON6 A
1
3
5
J1 4
CON6 A
1
3
5
1
3
5
J1 3
CON6 A
1
2
J1 1
+2 8V
J6
+1 2V
1
2
2
1
J1 2
+2 8V
J7
-12V
0
2
1
To Power
19
0
Modules
NOTE: All voltages availab le at each connec tor.
Total Com ponents = 10
Manuel A. Vega-Cartagena
Vicor Power Modules PCB

Finished Board
From Power
Modules
From Aircraft
To Power Modules
To Components
20
Manuel A. Vega-Cartagena
Vicor Power Modules PCB

21
Final Configuration
Manuel A. Vega-Cartagena
UAV’s Conical Sub-System Tx and Rx Paths
Testing

22
Task performed to gain hands-on experience.
Manuel A. Vega-Cartagena
Learning Experience

Radar Theory Background
–
–

PCB Design
–
–

23
RF Front End Design
Power Requirements
ORCAD
Routing machine
Design Implementation
Manuel A. Vega-Cartagena
Conclusions

Goals achieved!
–
–

24
80MHz/5MHz daughter card PCB developed
Power Modules PCB design developed
Gained valuable hands-on experience.
Manuel A. Vega-Cartagena
Questions
25
Manuel A. Vega-Cartagena
List of Acronyms





26
UAV – Unmanned Air Vehicle
IDEAS – Initiative to Develop Education through Astronomy
and Space Science
DCAS – Distributed Collaborative Adaptive Sensing
PCB – Printed Circuit Board
TTL – Transistor-Transistor Logic
Manuel A. Vega-Cartagena
Acknowledgements





27
Shannon Rodríguez / 555
Lihua Li / 912
Gerry Heymsfield / 613
Wai Fong / 567
Gerry McIntire / 613
Manuel A. Vega-Cartagena