Transcript Document

electronics fundamentals
circuits, devices, and applications
THOMAS L. FLOYD
DAVID M. BUCHLA
chapter 16
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat University
Diode
สารกึ่งตัวนา
สารกึ่งตัวนา จะมีลกั ษณะการจัดอิเล็กตรอนเป็ น energy bands
ระหว่าง band จะเป็ น gap ซึ่งเป็ นพลังงาน
ที่ตา้ นอิเล็กตรอน
Energy
Conduction band
energy band สุดท้ายคือ conduction
band เป็ นที่ที่อิเล็กตรอนสามารถเคลื่อนย้ายดด้
Energy gap
Valence band
Energy gap
ถัดจากแบนด์สุดท้ายคือ valence band เป็ นที่
ที่มีอเิ ล็กตรอนอยู่
Second band
Energy gap
First band
Nucleus
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
กระแสอิเล็กตรอน และกระแสโฮล
ที่อุณหภูมิหอ้ ง อิเล็กตรอนบางตัวมีพลังงานมากพอที่จะกระโดดออกดปยัง
conduction band
หลังจากกระโดดดปแล้ว อิเล็กตรอนพวกนี้จะเคลื่อนที่อย่างอิสระ และสร้างกระแสอิเล็กตรอนขึ้นเมื่อ
ป้อนแหล่งจ่ายให้กบั มัน
เมื่ออิเล็กตรอนกระโดดดป
ก็จะเกิดเป็ น โฮลขึ้นที่
valence band
Electronhole pair
Energy
Conduction band
Energy gap
Heat
energy
Valence band
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
กระแสโฮล และ กระแสอิเล็กตรอน
เมื่ออิเล็กตรอนเคลื่อนที่ออกดป ก็จะมีอิเล็กตรอนเข้ามาอยูแ่ ทน
Si
Electronics Fundamentals, Thongchai T.
Si
Free
electron
Si
© 2010 Phranakhon Rajabhat Univeristy
Diode
Impurities
สามารถเพิม่ โฮลหรื ออิเล็กตรอนอิสระให้มากขึ้นดด้ดว้ ยการเติมสารเข้าดปใน
ซิลิกอน
การเพิ่มจานวนอิเล็กตรอนใน conduction band จะดด้
สารกึ่งตัวนา n-type โดยจะเติมสารที่อยูท่ างด้านขวาของ
ตาราง
III IV V
B C N
Al Si P
การเพิ่มจานวนโฮล จะทาให้ดด้สารกึ่งตัวนา p-type โดยเติม
สารที่อยูท่ างซ้ายมือ
Electronics Fundamentals, Thongchai T.
Ga Ge As
In Sn Sb
© 2010 Phranakhon Rajabhat Univeristy
Diode
pn junction diode
pn junction หรื อดดโอด เป็ นอุปกรณ์ที่ยอมให้
กระแสดหลผ่านดด้ทิศทางเดียว
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Forward bias
เมื่อดด้ดบอัสตรง จะเกิดกระแสดหลขึ้น โดยแรงดันที่ป้อนให้จะผลักทั้งอิเล็กตรอนในด้าน
n และโฮลในด้าน p เข้าหากัน
p-region n-region
ศักย์ขวางกั้นใน depletion region จะถูกทาลาย
ทาให้เกิดกระแสดหล ในซิลิกอนดดโอด ศักย์ขวางกั้นมี
ค่าประมาณ 0.7 V.
p
n
R
-
+
VBIAS
forward-bias จะทาให้ depletion region แคบลง
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Reverse bias
ถ้า pn junction ดด้รับดบอัสกลับ อิเล็กตรอนและโฮลจะวิง่ ออกจากกัน กระแสจึงดม่
ดหล
p-region n-region
p
n
R
-
+
VBIAS
reverse-bias จะทาให้ depletion region กว้างขึ้น
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Diode characteristics
ลักษณะการนากระแสด้าน forward และ reverse แสดงใน V-I
characteristic curve
IF
VBR (breakdown)
Forward
bias
VR
0.7 V
Reverse
bias
VF
Barrier
potential
IR
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Diode models
สามารถประมาณค่าของดดโอดดด้หลายวิธีดว้ ยกัน ขึ้นอยูก่ บั ลักษณะการนาดปใช้งาน
IF
ideal model มองเป็ นสวิตช์เปิ ดหรื อปิ ดวงจร
practical model เพิ่มศักย์ขวางกั้นเข้าดป
ด้วย
complete model เพิ่มค่าความต้านทานด้าน
forward เข้าดปด้วย
Forward
bias
VR
0.7 V
VF
Reverse
bias
IR
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Half-wave Rectifier
Rectifiers เป็ นวงจรที่ทาหน้าที่เปลี่ยน ac ให้เป็ น dc
ดดโอดนากระแส (สวิตช์ปิดวงจร)
ในช่วงซีกบวก
ดดโอดดม่นากระแส (เปิ ดวงจร)
ในช่วงซีกลบ
Electronics Fundamentals, Thongchai T.
+
D
RL
D
- +
RL
© 2010 Phranakhon Rajabhat Univeristy
Diode
Full-wave Rectifier
ใช้หม้อแปลงแบบ center-tapped และใช้ดดโอดสองตัว
D1
F
Vsec
2
Vsec
2
Electronics Fundamentals, Thongchai T.
D2
RL
© 2010 Phranakhon Rajabhat Univeristy
Diode
Bridge Rectifier
เป็ นวงจร full-wave ที่ใช้ดดโอด สี่ ตัว และดม่ใช้หม้อแปลงแบบ centertapped
ในแต่ละซีกคลื่น ดดโอดสองตัวจะนากระแส อีกสองตัวดม่นากระแส
F
D3
D2
Electronics Fundamentals, Thongchai T.
D1
D4
RL
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Peak inverse voltage
Diodes must be able to withstand a reverse voltage when
they are reverse biased. This is called the peak inverse
voltage (PIV). The PIV depends on the type of rectifier
circuit and the maximum secondary voltage.
For example, in a full-wave circuit, if one diode is conducting
(assuming 0 V drop), the other diode has the secondary voltage
across it as you can see from applying KVL around the green path.
Notice that Vp(sec) = 2Vp(out) for
the full-wave circuit because
the output is referenced to the
center tap.
Electronics Fundamentals, Thongchai T.
0V
Vsec
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Peak inverse voltage
For the bridge rectifier, KVL can be applied to a loop that
includes two of the diodes. Assume the top diode is
conducting (ideally, 0 V) and the lower diode is off. The
secondary voltage will appear across the non-conducting
diode in the loop.
Notice that Vp(sec) = Vp(out) for the bridge because the output is
across the entire secondary.
0V
Vsec
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Power supplies
By adding a filter and regulator to the basic rectifier, a
basic power supply is formed.
Typically, a large electrolytic capacitor is used as a filter before the
regulator, with a smaller one following the regulator to complete
filtering action.
IC regulator
F
D3
D1
7805
D2
Electronics Fundamentals, Thongchai T.
D4
C1
1000 mF
C2
1 mF
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Special-purpose diodes
Special purpose diodes include
Zener diodes – used for establishing a reference voltage
Varactor diodes – used as variable capacitors
Light-emitting diodes – used in displays
Photodiodes – used as light sensors
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Troubleshooting power supplies
Begin troubleshooting by analyzing the symptoms and how
it failed. Try to focus on the most likely causes of failure.
A power supply has no output, but was working until a
newly manufactured PC board was connected to it. (a) Analyze
possible failures. (b) Form a plan for troubleshooting.
IC regulator
F
D3
D1
7805
D2
Electronics Fundamentals, Thongchai T.
D4
C1
1000 mF
C2
1 mF
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Troubleshooting power supplies
The supply had been working, so the problem is not
likely to be an incorrect part or wiring problem. The failure was
linked to the fact that a new PC board was connected to it,
which points to a possible overloading problem. If the load was
too much for the supply, it is likely a fuse would have blown, or
a part would likely have overheated, accounting for the lack of
output.
IC regulator
F
D3
D1
7805
D2
Electronics Fundamentals, Thongchai T.
D4
C1
1000 mF
C2
1 mF
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Troubleshooting power supplies
Based on the analysis, a sample plan is as
follows. (It can be modified as circumstances warrant.)
1. Disconnect power and check the fuse. If it is bad, replace it.
Before reapplying power, remove the load, open the power supply
case, and look for evidence of overheating (such as discolored
parts or boards). If no evidence of overheating proceed.
2. Check the new pc board (the load) for a short or overloading of
the power supply that would cause the fuse to blow. Look for
evidence of overheating.
3. Verify operation of the supply with measurements (see next
slide).
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Summary
Troubleshooting power supplies
The analysis showed that a
likely cause of failure was due to an overload. For the
measurement step, it may be as simple as replacing the
fuse and confirming that the supply works. After
replacing the fuse:
Reapply power to the supply but with no load. If the output is
okay, put a resistive test load on the power supply and measure
the output to verify it is operational. If the output is correct, the
problem is probably with the new pc board. If not, you will need
to further refine the analysis and plan, looking for an internal
problem.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Selected Key Terms
Majority carrier The most numerous charge carrier in a doped
semiconductor material (either free electrons
or holes.
Minority carrier The least numerous charge carrier in a doped
semiconductor material (either free electrons
or holes.
PN junction The boundary between n-type and p-type
semiconductive materials.
Diode An electronic device that permits current in
only one direction.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Selected Key Terms
Barrier The inherent voltage across the depletion
potential region of a pn junction diode.
Forward bias The condition in which a diode conducts
current.
Reverse bias The condition in which a diode prevents
current.
Full-wave A circuit that converts an alternating sinerectifier wave into a pulsating dc consisting of both
halves of a sine wave for each input cycle.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Selected Key Terms
Bridge rectifier A type of full-wave rectifier consisting of
diodes arranged in a four corner configuration.
Zener diode A type of diode that operates in reverse
breakdown (called zener breakdown) to
provide a voltage reference.
Varactor A diode used as a voltage-variable capacitor.
Photodiode A diode whose reverse resistance changes
with incident light.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
1. An energy level in a semiconductor crystal in which
electrons are mobile is called the
a. barrier potential.
b. energy band.
c. conduction band.
d. valence band.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
2. A intrinsic silicon crystal is
a. a poor conductor of electricity.
b. an n-type of material.
c. a p-type of material.
d. an excellent conductor of electricity.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
3. A small portion of the Periodic Table is shown. The
elements highlighted in yellow are
a. majority carriers.
b. minority carriers.
c. trivalent elements.
d. pentavalent elements.
Electronics Fundamentals, Thongchai T.
III IV V
B C N
Al Si P
Ga Ge As
In Sn Sb
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
4. At room temperature, free electrons in a p-material
a. are the majority carrier.
b. are the minority carrier.
c. are in the valence band.
d. do not exist.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
5. The breakdown voltage for a silicon diode is reached
when
a. the forward bias is 0.7 V.
b. the forward current is greater than 1 A.
c. the reverse bias is 0.7 V.
d. none of the above.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
6. The circuit shown is a
a. half-wave rectifier.
b. full-wave rectifier.
c. bridge rectifier.
d. zener regulator.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
7. PIV stands for
a. Positive Ion Value.
b. Programmable Input Varactor.
c. Peak Inverse Voltage.
d. Primary Input Voltage.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
8. A type of diode used a a voltage-variable capacitor is a
a. varactor.
b. zener.
c. rectifier.
d. LED.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
9. If one of the four diodes in a bridge rectifier is open, the
output will
a. be zero.
b. have ½ as many pulses as normal.
c. have ¼ as many pulses as normal.
d. be unaffected.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
10. When troubleshooting a power supply that has a
bridge rectifier, begin by
a. replacing the bridge rectifier.
b. replacing the transformer.
c. making measurements.
d. analyzing the symptoms and how it failed.
Electronics Fundamentals, Thongchai T.
© 2010 Phranakhon Rajabhat Univeristy
Diode
Quiz
Answers:
Electronics Fundamentals, Thongchai T.
1. c
6. b
2. a
7. c
3. c
8. a
4. b
9. b
5. d
10. d
© 2010 Phranakhon Rajabhat Univeristy