L21-layout design - VADA
Download
Report
Transcript L21-layout design - VADA
L21:Lower Power Layout Design
1998. 6.7
성균관대학교 조 준 동 교수
http://vlsicad.skku.ac.kr
Device Scaling of Factor of S
•
•
•
•
•
•
•
•
•
Constant scaled wire increases coupling capacitance by S and wire resistance
by S
Supply Voltage by 1/S, Theshold Voltage by 1/S, Current Drive by 1/S
Gate Capaitance by 1/S, Gate Delay by 1/S
Global Interconnection Delay, RC load+para by S
Interconnect Delay: 50-70% of Clock Cycle
Area: 1/S2
Power dissipation by 1/S - 1/S2
( P = nCVdd2f, where nC is the sum of capacitance times #transitions)
SIA (Semiconductor Industry Association): On 2007, physical limitation: 0.1 m
20 billion transistors, 10 sqare centimeters
, 12 or 16 inch wafer
Delay Variations at Low-Voltage
• At high supply voltage, the delay increases with temperature
(mobility is decreasing with temperature) while at very low
supply voltages the delay decreases with temperature (VT is
decreasing with temperature).
• At low supply voltages, the delay ratio between large and
minimum transistor widths W increases in several factors.
• Delay balancing of clock trees based on wire snaking in order
to avoid clock-skew. In this case, at low supply voltages, slightly
VT variations can significantly modify the delay balancing.
Quarter Micron Challenge
•
•
•
•
•
•
•
•
•
•
•
•
•
Computers/peripherals (SOC): 1996 ($50 Billion) 1999 ($70 Billion)
Wiring dominates delay: wire R comparable to gate driver R; wire/wire coupling
C > C to ground
Push beyond 0.07 micron
Quest for area(past), speed-speed (now), power-power-power(future)
Accelerated increases of clock frequencies
Signal integrity-based tools
Design styles (chip + packages)
System-level design(system partitioning)
Synthesis with multiple constraints (power,area,timing)
Partitioning/MCM
Increasing speed limits complicate clock and power distribution
Design bounded by wires, vias, via resistance, coupling
Reverse scaling: adding area/spacing as needed: widening, thickening of wires,
metal shielding & noise avoidance - adding metal
CLOCK POWER CONSUMPTION
•Clock power consumption is as
large as the logic power; Clock
Signal carrying the heaviest load
and switching at high frequency,
clock distribution is a major
source of power dissipation.
• In a microprocessor, 18% of
the total power is consumed by
clocking
• Clock distribution is designed
as a hierarchical clock tree,
according to the decomposition
principle.
Power Consumption per block in
typical microprocessor
Crosstalk
•
•
•
•
•
•
•
•
•
•
•
Solution for Clock Skew
Dynamic Effects on Skew
Capacitance Coupling
Supply Voltage Deviation (Clock
driver and receiver voltage
difference)
Capacitance deviation by circuit
operation
Global and local temperature
Layout Issues: clocks routed first
Must aware of all sources of delay
Increased spacing
Wider wires
Insert buffers
Specialized clock need net
matching
Two approaches: Single Driver, Htree driver
•
•
•
•
Gated Clocks: The local clocks that
are conditionally enabled so that the
registers are only clocked during the
write cycles. The clock is partitioned
in different blocks and each block is
clocked with its own clock.
Gating the clocks to infrequently
used blocks does not provide and
acceptable level of power savings
Divide the basic clock frequency to
provide the lowest clock frequency
needed to different parts of the
circuit
Clock Distribution: large clock buffer
waste power. Use smaller clock
buffers with a well-balanced clock
tree.
PowerPC Clocking Scheme
CLOCK DRIVERS IN THE DEC ALPHA
21164
DRIVER for PADS or LARGE CAPACITANCES
Off-chip power (drivers and pads) are increasing and is very difficult
to reduce such a power, as the pads or drivers sizes cannot be
decreased with the new technologies.
Layout-Driven Resynthesis for Lower Power
Low Power Process
Vdd
• Dynamic Power Dissipation
C djp
Pd C L Vdd f
2
I ds
2
(Vgs Vt )
2
Vin
C ovp
Vo
C ovn
C djn
n
C gate Cox (W L)
i 1
m
Cin (C gate ) j
D
j 1
Cov CGD 0 W
Cdj C j AD C jsw PD
AD W D, PD 2(W D)
Drain
W
C jb
C jsw
Crosstalk
•
•
•
In deep-submicron layouts, some of the netlengths for connection between
modules can be so long that they have a resistance which is comparable to the
resistance of the driver.
Each net in the mixed analog/digital circuits is identified depending upon its
crosstalk sensitivity
– 1. Noisy = high impedance signal that can disturb other signals, e.g., clock
signals.
– 2. High-Sensitivity = high impedance analog nets; the most noise sensitive
nets such as the input nets to operational amplifiers.
– 3. Mid-Sensitivity = low/medium impedance analog nets.
– 4. Low-Sensitivity = digital nets that directly affect the analog part in some
cells such as control
signals.
– 5. Non-Sensitivity = The most noise insensitive nets such as pure digital
nets,
The crosstalk between two interconnection wires also depends on the
frequencies (i.e., signal activities) of the signals traveling on the wires. Recently,
deep-submicron designs require crosstalk-free channel routing.
Power Measure in Layout
•
•
•
•
•
The average dynamic power consumed by a CMOS gate is given below, where
C_l is the load capacity at the output of the node, V_dd is the supply voltage,
T_cycle is the global clock period, N is the number of transitions of the gate
output per clock cycle, C_g is the load capacity due to input capacitance of
fanout gates, and C_w is the load capacity due to the interconnection tree
formed between the driver and its fanout gates.
Pav = (0.5 Vdd2) / (Tcycle Cl N) = (0.5 Vdd2) / (Tcycle (Cg + Cw )N)
Logic synthesis for low power attempts to minimize SUMi Cgi Ni
Physical design for low power tries to minimize
SUMi Cwi Ni
. Here Cwi consists of Cxi + CsI, where Cxi is the capacitance of net i due to its
crosstalk, and CsI is the substrate capacitance of net i. For low power layout
applications, power dissipation due to crosstalk is minimized by ensuring that
wires carrying high activity signals are placed sufficiently far from the other wires.
Similarly, power dissipation due to substrate capacitance is proportional to the
wirelength and its signal activity.
이중 전압을 이용한 레이아웃
•
조합회로의 전력 소모량을 줄이는
이중 전압 레이아웃 기법 제안
•
이중 전압 셀을 사용할 때, 한 cell
row에 같은 전압의 cell이 배치되면
서 증가하는 wiring 과 track 의 수를
줄임
•
최소 트랜지스터 개수를 사용하는
Level Converter 회로의 구현
•
디바이스의 성능을 유지하면서
이중 전압을 사용하는 Clustered
Voltage Scaling [Usami, ’95]을 적
용
•
제안된 Mix-And-Match Power
Supply 레이 아웃 구조는 기존의
Row by Row Power Supply
[Usami, ’97] 레이 아웃 구조를
개선하여 전력과 면적을 줄임
Clustered Voltage Scaling
• 저전력 netlist 를 생성
G5
F/F
S 5>0
G4
Slack(S i) = R i - A i
G3
G6
G2
S 6>0
S 4>0
G8
S 2<0
S 3>0
LC1
S 8<0
G1
S 1>0
F/F
G7
S 7<0
S 9>0
: VDDL
S 11<0
F/F
: VDDH
LC2
G11
G10
S 10<0
G9
: Level Converter
Row by Row Power Supply 구조
standard
cell
VDDL
VDDH
VDDL
cell
VDDL
VDDH
standard cell
standard cell
VDDL
VDDH cell
module
VSS
VDDL cell
VDDH cell
VDDH
VSS
Mix-And-Match Power Supply 구조
standard cell
VDDL
VDDH
cell
VDDH
VDDL VDDL
cell
VDDH
standard cell
standard cell
module
VDDH cell
VDDL
cell
VDDH
cell
VDDL
VDDL
VDDH
VDDH
VSS
VSS
VDDL cell
구조비교
Conventional
Circuit
RRPS
MAMPS
VDDL
VDDH
VDDH
VDDL
VDDH
module
module
module
Level Converter 구조
• Transistor의 갯수 : 6개
4개
• 전력과 면적면에서 효과적
VDDH
VDDH
VDDH
OUT
VDDL
VSS/VDDL
VSS/VDDH
IN
Vth=1.5V
기 존
Vth=2.0V
제 안
Mix-And-Match Power Supply
Design Flow
Single voltage netlist
Multiple voltage scaling
Netlist with multiple supply voltage
(OPUS)
Assign supply voltage to each cell
Physical placement
(Aquarius XO)
Routing
Synthesis timing, power and area
(PowerMill)
실험결과
전체 Power
전체 Area
Area
(%)
power
(%)
100
47%
10%
15%
100
2%
Conventional
circuit
RRPS
MAMPS
Conventional
circuit
RRPS
MAMPS
Low Power Design Tools
•
Transistor Level Tools (5-10% of silicon)
– SPICE, PowerMill(Epic), ADM(Avanti/Anagram), Lsim Power Analyst(mentor)
•
Logic Level Tools (10-15%)
– Design Power and PowerGate (Synopsys), WattWatcher/Gate (Sente), PowerSim
(System Sciences), POET (Viewlogic), and QuickPower (Mentor)
•
Architectural (RTL) Level Tools (20-25%)
– WattWatcher/Architect (Sente): 20-25% accuracy
•
Behavioral (spreadsheet) Level Tools (50-100%)
– Active area of academic research
Commercial synthesis systems
Research synthesis systems
AArchitectural
synthesis.
L - Logic
synthesis.
Low-Power CAD sites
•
•
•
•
•
•
Alternative System Concepts, Inc, : 7X power reduction throigh optimization,
contact http://www.ee.princeton.edu and Jake Karrfalt at [email protected] or
(603) 437-2234. Reduction of glitch and clock power; modeling and
optimization of interconnect power; power optimization for data-dominated
designs with limited control flow.
Mentor Graphics QuickPower: Hierarchical of determining overall benet of
exchanging the blocks for lower power. powering down or disabling blocks when
not in use by gated-clock
choose candidates for power-down Calculate the effect of the power-down logic
http://www.mentorg.com
Synopsys's Power Compiler http://www.synopsys.com/products/power/power_ds
Sente's WattWatcher/Architect (first commerical tool operating at the
architecture level(20-25 %accuracy). http://www.powereda.com
Behavioral Tool: Hyper-LP (Optimization), Explore (Estimation) by J. Rabaey
Design Power(Synopsys)
•
•
•
DesignPower(TM) provides a single, integrated environment for power
analysis in multiple phases of the design process:
–
Early, quick feedback at the HDL or gate level through probabilistic
analysis.
–
Improved accuracy through simulation-based analysis for gate level
and library exploration.
DesignPower estimates switching, internal cell and leakage power. It accepts
user-defined probabilities, simulation toggle data or a combination of both as
input. DesignPower propagates switching information through sequential
devices, including flip-flops and latches.
It supports sequential, hierarchical, gated-clock, and multiple-clock designs.
For simulation toggle data, it links directly to Verilog and VHDL simulators,
including Synopsys' VSS.
References
[1] Gary K. Yeap, "Practical Low Power Digital VLSI Design",
Kluwer Academic Publishers.
[2] Jan M. Rabaey, Massoud Pedram, "Low Power Design Methodologies",
Kluwer Academic Publishers.
[3] Abdellatif Bellaouar, Mohamed I. Elmasry, "Low-Power Digital VLSI Design
Circuits And Systems", Kluwer Academic Publishers.
[4] Anantha P. Chandrakasan, Robert W. Brodersen, "Low Power Digital CMOS
Design", Kluwer Academic Publishers.
[5] Dr. Ralph Cavin, Dr. Wentai Liu, "1996 Emerging Technologies : Designing
Low Power Digital Systems"
[6] Muhammad S. Elrabaa, Issam S. Abu-Khater, Mohamed I. Elmasry,
"Advanced Low-Power Digital Circuit Techniques",
Kluwer Academic Publishers.
References
•
•
•
•
•
[BFKea94] R. Bechade, R. Flaker, B. Kaumann, and et. al. A 32b 66 mhz 1.8W
Microprocessor". In IEEE Int. Solid-State Circuit Conference, pages 208-209,
1994.
[BM95] Bohr and T. Mark. Interconnect Scaling - The real limiter to high
performance ULSI". In proceedings of 1995 IEEE international electron devices
meeting, pages 241-242, 1995.
[BSM94] L. Benini, P. Siegel, and G. De Micheli. Saving Power by Synthesizing
Gated Clocks for Sequential Circuits". IEEE Design and Test of Computers,
11(4):32-41, 1994.
[GH95] S. Ganguly and S. Hojat. Clock Distribution Design and Verification for
PowerPC Microprocessor". In International Conference on Computer-Aided
Design, page Issues in Clock Designs, 1995.
[MGR96] R. Mehra, L. M. Guerra, and J. Rabaey. Low Power Architecture
Synthesis and the Impact of Exploiting Locality". In Journal of VLSI Signal
Processing,, 1996.