Transcript Elements
Passive Elements and Phasor Diagrams
Resistor
v Ri
V = RI
R
i
+
v
-
v
i
I
Inductor
i
di
dt
V = jwL I
vL
L
+
v
V
-
v
i
V
I
Capacitor
+
v
i
dv
dt
I = jwC V
C
i
v
iC
-
I
V
ELEC 371
Three-phase systems
1
Industrial Power Systems
Salvador Acevedo
Ideal Transformer
i1
+
v1
-
v1 i 2 N1
a
v 2 i1 N2
V1 I2 N1
a
V2 I1 N2
i2
+
v2
-
N1:N2
Transformer feeding load:
I1
+
V1
-
I2
+
V2
-
Z
V2 = V1/a
I2 = V2/Z
I1= I2/a
V2
Assuming a RL load
connected to secondary
and ideal source to primary
V1
I1
I2
ELEC 371
Three-phase systems
2
Industrial Power Systems
Salvador Acevedo
Two Winding Transformer Model
The linear equivalent model of a real
transformer consists of an ideal transformer and
some passive elements
i1
i2
+
+
v1
v2
-
ELEC 371
Three-phase systems
3
N1:N2
-
Industrial Power Systems
Salvador Acevedo
AC Generators and Motors
AC synchronous generator
Single-phase equivalent
AC synchronous motor
Single-phase equivalent
AC induction motor (rarely used as generator)
ELEC 371
Three-phase systems
4
Industrial Power Systems
Salvador Acevedo
Steady-state Solution
In sinusoidal steady-state a circuit may be solved using phasors
I
R
vs
+
VS
-
jwL
i
0
VS = R I
p
2p
Ix=I cos
+ jwL I
VS = (R + jwL) I
VS
VS = (R + jX) I
VS = Z I
VS
Z
Vmax 0
I
Z
I
I =
Iy=I sin
Rectangular form
I I max
I
Polar form
I = Ix + j Iy = Imax
From rectangular form to polar form:
I =
Ix 2 + Iy 2
Iy
Ix
tan 1
Magnitude
Angle or phase
From polar form to rectangular form:
Ix Icos
Iy Isin
ELEC 371
Three-phase systems
5
Real part
Reactive or imaginary part
Industrial Power Systems
Salvador Acevedo
Single-phase Power Definitions
i(t) = Im sin (wt+
i) amps
+
-
v(t) = Vm sin(wt+
v)
volts
Load: any R,L,C
combination
w : angular frequency in rad/sec
f: frequency in Hz
w=2pf
Instantaneous power
p( t ) v ( t ) i ( t ) Vm sin wt v
p( t )
I
m
)
sin( wt i )
1
V I cos(v i ) cos( 2 wt v
2 m m
i
Average Power (or REAL POWER)
1
P
T
T
p( t ) dt
0
1
V I cos VrmsI rms cos
2 m m
Apparent Power
S = VrmsI rms
Power Factor
REAL POWER
P
pf
APPARENT POWER
S
For this circuit, the power factor is
V
I
cos
pf = rms rms
cos
Vrms I rms
ELEC 371
Three-phase systems
6
Industrial Power Systems
Salvador Acevedo
Power Triangle
S
Ssin =Q
P=Scos
Real Power
P = S cos = V I cos
Reactive Power
Q = S sin V I sin vars
watts
Complex Power
S = S
P + j Q
S = VI cos + jVIsin
If
= v - i
v = 0
and assuming a reference
then
= -i
therefore
S = V Icos( ) -
S = V Icos(-i ) + jIsin(-i )
i
jIsin(i )
S V I*
The magnitude
is called Apparent Power:
S = VI
ELEC 371
Three-phase systems
7
volt - amperes (VA)
Industrial Power Systems
Salvador Acevedo
Power Consumption by Passive Elements
Impedance: Z = R + jX = Z
Resistive Load
Z = R = R 0o
P = VI cos0o = VI = I 2 R = V 2 / R
Q = VI sin 0o = 0
watts
vars
A resistor absorbs P
Purely Inductive Load
Z = jwL = jX L X L90o
P VI cos(90o ) = 0
watts
Q = VI sin(90o ) = VI = I 2 X L = V2 / X L
var s
An inductor absorbs Q
Purely Capacitive Load
Z=
1
= -jX C X C 90o
jwC
P VI cos(-90o ) = 0
watts
Q = VI sin(-90o ) = -VI = -I 2 X L = -V 2 / X L
var s
A capacitor absorbs negative Q. It supplies Q.
ELEC 371
Three-phase systems
8
Industrial Power Systems
Salvador Acevedo
Advantages of Three-phase Systems
Creation of the three-phase induction motor
Starting torque
Three-phase
induction motor
Single-phase
induction motor
yes
no
needs auxiliary
starting circuitry
Steady state torque Constant
Oscillating causing
vibration
Efficient transmission of electric power
3 times the power than a single-phase circuit by
adding an extra cable
i
va
+
v
-
Single-phase
Load
vb
vc
p = vi
ia
ib
Three-phase
Load
ic
p = va ia + vb ib + vc ic
Savings in magnetic core when constructing
Transformers
Generators
ELEC 371
Three-phase systems
9
Industrial Power Systems
Salvador Acevedo
Three-phase Voltages
va
vb
vc
va(t) = Vm sin wt
volts
vb(t) = Vm sin (wt - 2p/3) = Vm sin (wt - 120)
volts
vc(t) = Vm sin (wt - 4p/3) = Vm sin (wt - 240)
or
volts
vb(t) = Vm sin (wt + 2p/3) = Vm sin (wt + 120)
w=2p f
w: angular frequency in rad/sec
volts
f : frequency in Hertz
Vc
120
120
Va
120
ELEC 371
Three-phase systems
10
Vb
Industrial Power Systems
Salvador Acevedo
Star Connection (Y)
Y-connected Voltage Source
a
- n
c
+
+
Van
-
Vbn
+
Vcn
b
Line - to - neutral voltages Van, Vbn, Vcn.
(phase voltages for Y - connection)
same magnitude: V P
VP Van Vbn Vcn
Line - to - line voltages Vab, Vbc, Vca
same magnitude: VLL
Vab = Van - Vbn
VLL =
ELEC 371
Three-phase systems
11
3 VP
Industrial Power Systems
Salvador Acevedo
Delta Connection (D )
D-connected Voltage Source
a
Vca
+
Vab
-
+
c
Vbc
+
b
Line - to - line voltages Vab, Vbc, Vca.
(phase voltages for D - connection)
same magnitude: VLL VP
Phase currents Iab, Ibc, Ica.
same magnitude: I P
Line currents Ia, Ib, Ic.
same magnitude: I L
IL = 3 IP
ELEC 371
Three-phase systems
12
Industrial Power Systems
Salvador Acevedo
Y-connected Load
Ia
a
- n
c
+
ia
+
Van
-
Vcn
Za
Vbn
+
n'
b
Zc
Zb
Ib
Ic
ia
ia
Balanced case: Za = Zb = Zc = Z
Ia + Ib + Ic = 0
Ib = Ia -120
Ic = Ia - 240
ELEC 371
Three-phase systems
13
Industrial Power Systems
Salvador Acevedo
D-connected Load
Ia
a
- n
c
+
ia
+
Van
-
Vcn
Zca
Vbn
+
b
Zab
Zbc
Ib
Ic
ia
ia
ELEC 371
Three-phase systems
14
Industrial Power Systems
Salvador Acevedo
Y-D Equivalence
Za
Zca
Zab
n'
Zc
Zb
Zbc
Balanced case:
Za = Zb = Zc = Zy
Z D = 3Zy
Zab = Zbc = Zca = Z D = 3Zy
ELEC 371
Three-phase systems
15
Industrial Power Systems
Salvador Acevedo
Power in Three-phase Circuits
Three - phase voltages and currents:
va Vm sin wt v
ia I m sin wt i
vc Vm sin wt v 240
ic I m sin wt i 240
vb Vm sin wt v 120
ib I m sin wt v 120
The three - phase instantaneous power is:
p(t ) p3 va ia vb ib vc ic
sin wt v sin wt i sin wt v 120 sin wt v 120
p3 Vm I m
sin wt v 240 sin wt i 240
This expression can easily be reduced to:
p3 23 Vm I m cosv i
Since the instantaneous power does not change with the time,
its average value equals its intantaneous value:
P3 p3
P3 3VP I P cos
where: VP
ELEC 371
Three-phase systems
16
Vm
2
IP
Im
2
v i
Industrial Power Systems
Salvador Acevedo
Three-phase Power
In a Y - connection
VLL 3 VP
IL IP
V
P3 3VP I P cos 3 LL I L cos 3 VLL I L cos
3
In a D - connection
VLL VP
IL 3 IP
I
P3 3VP I P cos 3VLL L cos 3 VLL I L cos
3
Regardless of the connection (for balanced systems),
the average power (real power) is :
P3 3 VLL I L cos
watts
Similarly, reactive power and apparent power expressions are:
Q 3 3 VLL I L sin
vars
S3 3 VLL I L
VA
ELEC 371
Three-phase systems
17
Industrial Power Systems
Salvador Acevedo
Three-phase Transformers
Use of one three-phase transformer unit
Use of 3 single phase transformers to form a
“Transformer Bank
ELEC 371
Three-phase systems
18
Industrial Power Systems
Salvador Acevedo
Physical Overview
ELEC 371
Three-phase systems
19
Industrial Power Systems
Salvador Acevedo
N1 : N 2
A single-phase transformer
Example:10 KVA, 38.1KV/3.81KV
+
v2
-
+
v1
-
a=N1/N2=V1/V2
Three-phase Transformers Connections
Y-Y; DD; Y- D; D -Y
Primary
terminals
Bank of
3 single-phase
transformers
Secondary
terminals
The Bank Transformation Ratio is defined as:
primary voltage
a' line to line
line to line secondary voltage
ELEC 371
Three-phase systems
20
Industrial Power Systems
Salvador Acevedo
Y-Y connection
A
B
C
N
N1
N2
+ v1 -
+ v2 -
N1
N1
N2
N2
n
a
b
c
Ratings for Y-Y bank
using 3 single-phase transformers:
3x10KVA = 30 KVA
66 KV / 6.6 KV
ELEC 371
Three-phase systems
21
Industrial Power Systems
Salvador Acevedo
DD connection
A
N1
N2
+ v1 -
+ v2 -
a
B
C
N1
N1
N2
N2
b
c
Ratings for DD bank:
30 KVA; 38.1 KV / 3.81 KV
ELEC 371
Three-phase systems
22
Industrial Power Systems
Salvador Acevedo
Y- D connection
A
B
C
N
N1
N2
+ v1 -
+ v2 -
a
N1
N1
N2
N2
b
c
Ratings for Y-D bank:
30 KVA; 66 KV / 3.81 KV
ELEC 371
Three-phase systems
23
Industrial Power Systems
Salvador Acevedo
D -Y connection
A
N1
N2
+ v1 -
+ v2 -
B
C
N1
N1
N2
N2
n
a
b
c
Ratings for D-Y bank:
30 KVA; 38.1 KV / 6.6 KV
ELEC 371
Three-phase systems
24
Industrial Power Systems
Salvador Acevedo
Per unit modelling
Power lines operate at kilovolts (KV)
and kilowatts (KW) or megawatts (MW)
To represent a voltage as a percent of a reference
value, we first define this BASE VALUE.
Example:
Base voltage: Vbase = 120 KV
Circuit voltage
Percent of
base value
Per unit value
108 KV
90%
0.9
120 KV
100%
1.0
126 KV
105%
1.05
60 KV
50%
0.5
per unit quantity =
Voltage_1=
actual quantity
base quantity
108
0.9 p.u.
120
** The percent value and the per unit value help
the analyzer visualize how close the operating
conditions are to their nominal values.
ELEC 371
Three-phase systems
25
Industrial Power Systems
Salvador Acevedo
Defining bases
4 quantities are needed to model a network in per unit system:
V:
I:
S:
Z:
Vpu
S pu
voltage
current
power
impedance
VBASE
IBASE
SBASE
ZBASE
Vactual
Vbase
I pu
Sactual
S base
Z pu
I actual
I base
Z actual
Z base
Given two bases, the other two quantities are easily determined.
If base voltage and base power are known:
Vbase 100 KV, S base 100 MVA
then, base current and base impedance are:
S base
100,000,000
I base =
I base
1000 A.
Vbase
100,000
Vbase
100,000
Z base =
Z base
100
I base
1000
Another way to express base impedance is:
Z base
Vbase
Vbase
=
I base
S base
Vbase
V
base
2
S base
Real power base and reactive power base are:
Pbase = S base = 100 MW
Q base = S base = 100 MVAR
ELEC 371
Three-phase systems
26
Industrial Power Systems
Salvador Acevedo
Three phase bases
In three-phase systems it is common to have data for the
three-phase power and the line-to-line voltage.
Sbase -3 3S base 1
Vbase LL
3Vbase LN
The bas e c urrent and impedanc e
f or the three - phas e c as e are :
I base
S base 3
3
Vbase LL
3
S base 3
3Vbase LL
2
Z base
Vbase LL
2
Vbase LL
3
S base 3
S base 3
3
In per unit,
line - to - neutral v oltage = line - to - line v oltage
VLN(pu) = VLL(pu)
w hy ?
With p.u. calculations, three-phase values of voltage,
current and power can be used without undue anxiety
about the result being a factor of 3 incorrect !!!
ELEC 371
Three-phase systems
27
Industrial Power Systems
Salvador Acevedo
Example
The following data apply to a three-phase case:
Sbase=300 MVA
(three-phase power)
Vbase=100 KV
(line-to-line voltage)
a
b
c
Three-phase load
270 MW
100 KV
pf=0.8
Using the per unit method:
270
P=
0.9 p.u.
300
V = 1.0 p.u.
Normally, we' d say:
P = 3 VL I L cos = 3 VL I L pf
I=
P
3 VL pf
270x106
3 (100x103 ) (0.8)
1948.5 A.
Single-phase equivalent:
I=1.125 p.u.
P = V I pf
then
P
0.9
I=
1125
.
p. u.
V pf (10
. )(0.8)
+
V=1 p.u.
-
This current is 12.5% higher than its base value!
300,000
To check: 1.125xIbase = (1.125)
. x 1732 1948.5 A.
1125
3 100
ELEC 371
Three-phase systems
28
Industrial Power Systems
Salvador Acevedo
Transformers in per unit calculations
With an ideal transformer
+
V1
-
2400 V.
+
V2
-
4.33 + j 2.5 ohms
2400:120 V
5 KVA
High Voltage Bases
Sbase1 = 5 KVA
Vbase1= 2400 V
Ibase1 = 5000/2400=2.083 A
Zbase1= 2400/2.083=1152
Low Voltage Bases
Sbase2 = 5KVA
Vbase2 = 120 V
I base2 = 5000/120=41.667 A
Z base2 = 120/41.667=2.88
From the circuit:
V1=2400 V.
V2=V1/a=V1/20=120 V.
In per unit:
V1=1.0 p.u.
V2=1.0 p.u.
+
1.0
-
+
1.0
-
The load in per unit is:
Z=(5 30)/Zbase2 =1.7361 30 p.u.
The current in the circuit is:
I=(1.0 0/ (1.7361 30 =0.576 -30 p.u.
The current in amperes is:
Primary:
I1=0.576 x Ibase1= 1.2 A.
Secondary:
I2=0.576 x Ibase2= 24 A.
ELEC 371
Three-phase systems
29
Industrial Power Systems
Salvador Acevedo
One line diagrams
A one line diagram is a simplified
representation of a multiphase-phase circuit.
TRANSFORMER
Transmission line
TRANSFORMER
GENERATOR
GENERATOR
Transmission line
Transmission line
LOAD
ELEC 371
Three-phase systems
30
Industrial Power Systems
Salvador Acevedo
Nodal Analysis
Suppose the following diagram represents the single-phase equivalent of
a three-phase system
z13=j2 p.u.
z3=j2 p.u.
z1=j1 p.u.
z12=j0.5 p.u.
z23=j0.5 p.u.
V1= 1 p.u.
V3= -j1 p.u.
z2=10 p.u.
Finding Norton equivalents and representing impedances as admittances:
y13=-j0.5 p.u.
1
y12=-j2 p.u.
2
y1=-j1 p.u.
3
y23=-j2 p.u.
y2=0.1 p.u.
y3=-j0.5 p.u.
I1= -j1 p.u.
I3= -0.5 p.u.
I1=y1 V1 + y12(V1-V2) + y13(V1-V3)
0 = y12 (V2-V1) + y2 V2 + y23(V2-V3)
I3=y13(V3-V1) + y23(V3-V2) + y3 V3
In matrix form:
y1 + y12 + y13
- y12
- y13
- y12
y12 + y 2 + y 23
j 3.5
j2
0.1 j 4
j2
j 0.5
j2
ELEC 371
Three-phase systems
31
- y 23
j 0.5 V1
j 2 V2
j 3 V3
V1
- y 23
V2
y13 + y 23 + y 3 V3
- y13
- j1
0
- 0.5
I1
0
I3
V1
solving V2
V3
0.77 24
0.73 35 p. u.
0.71 44
Industrial Power Systems
Salvador Acevedo
General form of the nodal analysis
The system of equations is repeated here to find a general solution technique:
y1 + y12 + y13
V1 I1
- y12
- y13
y
y
+
y
+
y
y
12
12
2
23
23
V2 0
- y13
- y 23
y13 + y 23 + y 3 V3 I3
or
Y11 Y12 Y13 V1 J1
Y
Y
Y
21
22
23
V2 J2
Y31 Y32 Y33 V3 J3
In general:
N
Yii = y ij
i 1,2... N
j=1
Yij = -y ij
i 1,2... N ;
j 1,2... N ;
i j
J i = I i (from current sources flowing into the node) i 1,2... N
Once the voltages are found, currents and powers are
easily evaluated from the circuit. We have solved one
of the phases of the three-phase system (e.g. phase
‘a’). Quantities for the other two phases are shifted
120 and 240 degrees under balanced conditions.
Actual quantities can be found by multiplying the per
unit values by their corresponding bases.
ELEC 371
Three-phase systems
32
Industrial Power Systems
Salvador Acevedo