Lecture 19 - EECS: www
Download
Report
Transcript Lecture 19 - EECS: www
Lecture 19
OUTLINE
• Common-gate stage
• Source follower
Reading: Chapter 7.3-7.4
EE105 Fall 2007
Lecture 19, Slide 1
Prof. Liu, UC Berkeley
Diode-Connected MOSFETs
Diode-connected NMOSFET
RX
Diode-connected PMOSFET
1
ro1
g m1
Small-signal analysis circuit
1
RY
ro 2
gm2
Small-signal analysis circuit
• Note that the small-signal model of a PMOSFET is identical to
that of an NMOSFET
EE105 Fall 2007
Lecture 19, Slide 2
Prof. Liu, UC Berkeley
Common-Gate Amplifier Stage
• An increase in Vin decreases VGS and hence decreases ID.
The voltage drop across RD decreases Vout increases
The small-signal voltage gain (Av) is positive.
Av g m RD
EE105 Fall 2007
Lecture 19, Slide 3
Prof. Liu, UC Berkeley
Operation in Saturation Region
• For M1 to operate in saturation, Vout cannot fall below Vb-VTH.
Trade-off between headroom and voltage gain.
EE105 Fall 2007
Lecture 19, Slide 4
Prof. Liu, UC Berkeley
I/O Impedances of CG Stage (l = 0)
Small-signal analysis circuit for
determining input resistance, Rin
Small-signal analysis circuit for
determining output resistance, Rout
1
Rin
gm
EE105 Fall 2007
Rout RD
Lecture 19, Slide 5
Prof. Liu, UC Berkeley
CG Stage with Source Resistance
Small-signal equivalent
circuit seen at input
vX
1
gm
1
RS
gm
vin
For l = 0:
vout vout v X
1
g m RD
vin
v X vin
g m RS 1
EE105 Fall 2007
Lecture 19, Slide 6
Av
RD
1
RS
gm
Prof. Liu, UC Berkeley
• The output impedance of a CG stage with source resistance is
identical to that of CS stage with degeneration.
Small-signal analysis circuit for
determining output resistance, Rout
Rout rO 1 g m RS RS 1 g m rO RS rO
EE105 Fall 2007
Lecture 19, Slide 7
Prof. Liu, UC Berkeley
CG Stage with Biasing
• R1 and R2 establish the gate bias voltage.
• R3 provides a path for the bias current of M1 to flow.
vout
R3 || 1 / g m
g m RD
vin R3 || 1 / g m RS
EE105 Fall 2007
Lecture 19, Slide 8
Prof. Liu, UC Berkeley
CG Stage with Gate Resistance
• For low signal frequencies, the gate conducts no current.
Gate resistance does not affect the gain or I/O impedances.
EE105 Fall 2007
Lecture 19, Slide 9
Prof. Liu, UC Berkeley
CG Stage Example
Small-signal equivalent
circuit seen at input
vX
1 1
g m1 g m 2
1 1
RS
g m1 g m 2
vout v X
g m1 RD
Av
v X vin 1 g m1 g m 2 RS
EE105 Fall 2007
vin
Small-signal equivalent
circuit seen at output
1
vin
1 g m1 g m 2 RS
1
Rout1 g m1rO1 RS
rO1
gm2
1
Rout g m1rO1
|| RS rO1 || RD
gm2
Lecture 19, Slide 10
Prof. Liu, UC Berkeley
Source Follower Stage
vout
rO || RL
Av
1
vin 1 r || R
O
L
gm
Small-signal analysis circuit for
determining voltage gain, Av
vin v1 vout
EE105 Fall 2007
Equivalent circuit
vout g m v1 ro RL
g m vin vout ro RL
Lecture 19, Slide 11
Prof. Liu, UC Berkeley
Source Follower Example
• In this example, M2 acts as a current source.
Av
EE105 Fall 2007
Lecture 19, Slide 12
rO1 || rO 2
1
rO1 || rO 2
g m1
Prof. Liu, UC Berkeley
Rout of Source Follower
• The output impedance of a source follower is relatively low,
whereas the input impedance is infinite (at low frequencies);
thus, it is useful as a voltage buffer.
Small-signal analysis circuit for
determining output resistance, Rout
Rout
EE105 Fall 2007
1
1
|| rO || RL
|| RL
gm
gm
Lecture 19, Slide 13
Prof. Liu, UC Berkeley
Source Follower with Biasing
• RG sets the gate voltage to VDD; RS sets the drain current.
(Solve the quadratic equation to obtain the value of ID.)
Assuming l = 0:
1
W
2
I D nCox VDD I D RS VTH
2
L
EE105 Fall 2007
Lecture 19, Slide 14
Prof. Liu, UC Berkeley
Supply-Independent Biasing
• If Rs is replaced by a current source, the drain current ID
becomes independent of the supply voltage VDD.
EE105 Fall 2007
Lecture 19, Slide 15
Prof. Liu, UC Berkeley