Big Data - AGH University of Science and Technology

Download Report

Transcript Big Data - AGH University of Science and Technology

Big Data
Big Data
•
•
•
•
•
•
•
What is Big Data?
Analog starage vs digital.
The FOUR V’s of Big Data.
Who’s Generating Big Data
The importance of Big Data.
Optimalization
HDFC
Definition
Big data is the term for a collection
of data sets so large and complex
that it becomes difficult to
process using on-hand database
management tools or traditional
data processing applications. The
challenges include capture,
curation, storage, search,
sharing, transfer, analysis, and
visualization.
The FOUR V’s of Big Data
From traffic patterns and music downloads to web
history and medical records, data is recorded,
stored, and analyzed to enable that technology
and services that the world relies on every day.
But what exactly is big data be used?
According to IBM scientists big data can be break
into four dimensions: Volume, Velocity, Variety
and Veracity.
The FOUR V’s of Big Data
The FOUR V’s of Big Data
Volume. Many factors contribute to the increase in
data volume. Transaction-based data stored
through the years. Unstructured data streaming
in from social media. Increasing amounts of
sensor and machine-to-machine data being
collected. In the past, excessive data volume was
a storage issue. But with decreasing storage
costs, other issues emerge, including how to
determine relevance within large data volumes
and how to use analytics to create value from
relevant data.
The FOUR V’s of Big Data
The FOUR V’s of Big Data
Variety. Data today comes in all types of formats.
Structured, numeric data in traditional databases.
Information created from line-of-business
applications. Unstructured text documents,
email, video, audio, stock ticker data and financial
transactions. Managing, merging and governing
different varieties of data is something many
organizations still grapple with.
The FOUR V’s of Big Data
The FOUR V’s of Big Data
Velocity. Data is streaming in at unprecedented
speed and must be dealt with in a timely manner.
RFID tags, sensors and smart metering are driving
the need to deal with torrents of data in near-real
time. Reacting quickly enough to deal with data
velocity is a challenge for most organizations.
The FOUR V’s of Big Data
The FOUR V’s of Big Data
Veracity - Big Data Veracity refers to the biases,
noise and abnormality in data. Is the data that is
being stored, and mined meaningful to the
problem being analyzed. Inderpal feel veracity in
data analysis is the biggest challenge when
compares to things like volume and velocity. In
scoping out your big data strategy you need to
have your team and partners work to help keep
your data clean and processes to keep ‘dirty data’
from accumulating in your systems.
Who’s Generating Big Data
Mobile devices
(tracking all objects all the time)
Social media and networks
(all of us are generating data)
Scientific instruments
(collecting all sorts of data)
Sensor technology and networks
(measuring all kinds of data)
•
•
The progress and innovation is no longer hindered by the ability to collect data
But, by the ability to manage, analyze, summarize, visualize, and discover
knowledge from the collected data in a timely manner and in a scalable fashion
15
The importance of Big Data
•
•
•
•
The real issue is not that you are acquiring large
amounts of data. It's what you do with the data that
counts. The hopeful vision is that organizations will
be able to take data from any source, harness
relevant data and analyze it to find answers that
enable:
Cost reductions
Time reductions
New product development and optimized offerings
Smarter business decision making
The importance of Big Data
For instance, by combining big data and high-powered analytics, it is possible
to:
• Determine root causes of failures, issues and defects in near-real time,
potentially saving billions of dollars annually.
• Optimize routes for many thousands of package delivery vehicles while
they are on the road.
• Analyze millions of SKUs to determine prices that maximize profit and
clear inventory.
• Generate retail coupons at the point of sale based on the customer's
current and past purchases.
• Send tailored recommendations to mobile devices while customers are in
the right area to take advantage of offers.
• Recalculate entire risk portfolios in minutes.
• Quickly identify customers who matter the most.
• Use clickstream analysis and data mining to detect fraudulent behavior
HDFS / Hadoop
Data in a HDFS cluster is broken down into
smaller pieces (called blocks) and
distributed throughout the cluster. In this
way, the map and reduce functions can be
executed on smaller subsets of your larger
data sets, and this provides the scalability
that is needed for big data processing. The
goal of Hadoop is to use commonly
available servers in a very large cluster,
where each server has a set of inexpensive
internal disk drives.
PROS OF HDFS
• Scalable – New nodes can be added as needed,
and added without needing to change data
formats, how data is loaded, how jobs are
written, or the applications on top.
• Cost effective – Hadoop brings massively parallel
computing to commodity servers. The result is a
sizeable decrease in the cost per terabyte of
storage, which in turn makes it affordable to
model all your data.
• Flexible – Hadoop is schema-less, and can absorb
any type of data, structured or not, from any
Sources
•
•
•
•
•
•
McKinsey Global Institute
Cisco
Gartner
EMC, SAS
IBM
MEPTEC
Thank you for your
attention.
Authors: Tomasz Wis
Krzysztof Rudnicki