An Introduction to WEKA
Download
Report
Transcript An Introduction to WEKA
An Introduction to WEKA Explorer
In part from:Yizhou Sun
2008
What is WEKA?
Waikato Environment for Knowledge Analysis
It’s a data mining/machine learning tool developed by
Department of Computer Science, University of Waikato, New
Zealand.
Weka is also a bird found only on the islands of New Zealand.
2
4/13/2015
Download and Install WEKA
Website:
http://www.cs.waikato.ac.nz/~ml/weka/index.html
Support multiple platforms (written in java):
Windows, Mac OS X and Linux
3
4/13/2015
Main Features
49 data preprocessing tools
76 classification/regression algorithms
8 clustering algorithms
3 algorithms for finding association rules
15 attribute/subset evaluators + 10 search algorithms
for feature selection
4
4/13/2015
Main GUI
Three graphical user interfaces
“The Explorer” (exploratory data analysis)
“The Experimenter” (experimental
environment)
“The KnowledgeFlow” (new process model
inspired interface)
Simple CLI- provides users without a graphic
interface option the ability to execute commands
from a terminal window
5
4/13/2015
Explorer
The Explorer:
Preprocess data
Classification
Clustering
Association Rules
Attribute Selection
Data Visualization
References and Resources
6
4/13/2015
Explorer: pre-processing the data
Data can be imported from a file in various formats: ARFF,
CSV, C4.5, binary
Data can also be read from a URL or from an SQL database
(using JDBC)
Pre-processing tools in WEKA are called “filters”
WEKA contains filters for:
Discretization, normalization, resampling, attribute selection,
transforming and combining attributes, …
7
4/13/2015
WEKA only deals with “flat” files
@relation heart-disease-simplified
@attribute age numeric
@attribute sex { female, male}
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes}
@attribute class { present, not_present}
@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38,female,non_anginal,?,no,not_present
...
8
4/13/2015
WEKA only deals with “flat” files
@relation heart-disease-simplified
@attribute age numeric
@attribute sex { female, male}
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes}
@attribute class { present, not_present}
@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38,female,non_anginal,?,no,not_present
...
9
4/13/2015
10
University of Waikato
4/13/2015
11
University of Waikato
4/13/2015
IRIS dataset
5 attributes, one is the classification
3 classes: setosa, versicolor, virginica
15
University of Waikato
4/13/2015
Attribute data
Min, max and average value of attributes
distribution of values :number of items for which:
ai = v j | ai Î A,v j ÎV
class: distribution of attribute values in the classes
18
University of Waikato
4/13/2015
19
University of Waikato
4/13/2015
20
University of Waikato
4/13/2015
21
University of Waikato
4/13/2015
Filtering attributes
Once the initial data has been selected and loaded the user
can select options for refining the experimental data.
The options in the preprocess window include selection of
optional filters to apply and the user can select or remove
different attributes of the data set as necessary to identify
specific information.
The user can modify the attribute selection and change the
relationship among the different attributes by deselecting
different choices from the original data set.
There are many different filtering options available within the
preprocessing window and the user can select the different
options based on need and type of data present.
23
University of Waikato
4/13/2015
24
University of Waikato
4/13/2015
25
University of Waikato
4/13/2015
26
University of Waikato
4/13/2015
27
University of Waikato
4/13/2015
28
University of Waikato
4/13/2015
29
University of Waikato
4/13/2015
30
University of Waikato
4/13/2015
Discretizes in 10 bins of equal frequency
31
University of Waikato
4/13/2015
Discretizes in 10 bins of equal frequency
32
University of Waikato
4/13/2015
Discretizes in 10 bins of equal frequency
33
University of Waikato
4/13/2015
34
University of Waikato
4/13/2015
35
University of Waikato
4/13/2015
36
University of Waikato
4/13/2015
Explorer: building “classifiers”
“Classifiers” in WEKA are machine learning algorithmsfor
predicting nominal or numeric quantities
Implemented learning algorithms include:
Conjunctive rules, decision trees and lists, instance-based
classifiers, support vector machines, multi-layer perceptrons,
logistic regression, Bayes’ nets, …
37
4/13/2015
Explore Conjunctive Rules learner
Need a simple dataset with few attributes , let’s select the weather dataset
Select a Classifier
Select training method
Right-click to select parameters
numAntds= number of antecedents, -1= empty rule
Select numAntds=10
Results are shown in the right
window (can be scrolled)
Can change the right hand side
variable
Performance data
Decision Trees with WEKA
47
University of Waikato
4/13/2015
48
University of Waikato
4/13/2015
49
University of Waikato
4/13/2015
50
University of Waikato
4/13/2015
51
University of Waikato
4/13/2015
52
University of Waikato
4/13/2015
53
University of Waikato
4/13/2015
54
University of Waikato
4/13/2015
55
University of Waikato
4/13/2015
56
University of Waikato
4/13/2015
57
University of Waikato
4/13/2015
58
University of Waikato
4/13/2015
59
University of Waikato
4/13/2015
60
University of Waikato
4/13/2015
61
University of Waikato
4/13/2015
62
University of Waikato
4/13/2015
63
University of Waikato
4/13/2015
64
University of Waikato
4/13/2015
65
University of Waikato
4/13/2015
66
University of Waikato
4/13/2015
67
University of Waikato
4/13/2015
68
University of Waikato
4/13/2015
right click: visualize cluster assignement
Explorer: finding associations
WEKA contains an implementation of the Apriori algorithm
for learning association rules
Works only with discrete data
Can identify statistical dependencies between groups of
attributes:
milk, butter bread, eggs (with confidence 0.9 and support
2000)
Apriori can compute all rules that have a given minimum
support and exceed a given confidence
73
4/13/2015
Basic Concepts: Frequent Patterns
Tid
Items bought
10
Beer, Nuts, Diaper
20
Beer, Coffee, Diaper
30
Beer, Diaper, Eggs
40
Nuts, Eggs, Milk
50
Nuts, Coffee, Diaper, Eggs, Milk
Customer
buys both
Customer
buys diaper
itemset: A set of one or more items
k-itemset X = {x1, …, xk}
(absolute) support, or, support count of X:
Frequency or occurrence of an itemset
X
(relative) support, s, is the fraction of
transactions that contains X (i.e., the
probability that a transaction contains X)
An itemset X is frequent if X’s support is
no less than a minsup threshold
Customer
buys beer
74
April 13, 2015
Basic Concepts: Association Rules
Tid
Items bought
10
Beer, Nuts, Diaper
20
Beer, Coffee, Diaper
30
Beer, Diaper, Eggs
40
50
Nuts, Eggs, Milk
Nuts, Coffee, Diaper, Eggs, Milk
Customer
buys both
Customer
buys beer
75
Customer
buys
diaper
Find all the rules X Y with minimum
support and confidence
support, s, probability that a
transaction contains X Y
confidence, c, conditional probability
that a transaction having X also
contains Y
Let minsup = 50%, minconf = 50%
Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer,
Diaper}:3
Association rules: (many more!)
Beer Diaper (60%, 100%)
Diaper Beer (60%, 75%)
April 13, 2015
77
University of Waikato
4/13/2015
78
University of Waikato
4/13/2015
79
University of Waikato
4/13/2015
80
University of Waikato
4/13/2015
81
University of Waikato
4/13/2015
1. adoption-of-the-budget-resolution=y physician-fee-freeze=n 219 ==>
Class=democrat 219 conf:(1)
2. adoption-of-the-budget-resolution=y physician-fee-freeze=n aid-tonicaraguan-contras=y 198 ==> Class=democrat 198 conf:(1)
3. physician-fee-freeze=n aid-to-nicaraguan-contras=y 211 ==>
Class=democrat 210 conf:(1)
ecc.
Explorer: attribute selection
Panel that can be used to investigate which (subsets of)
attributes are the most predictive ones
Attribute selection methods contain two parts:
A search method: best-first, forward selection, random,
exhaustive, genetic algorithm, ranking
An evaluation method: correlation-based, wrapper, information
gain, chi-squared, …
Very flexible: WEKA allows (almost) arbitrary combinations
of these two
83
4/13/2015
84
University of Waikato
4/13/2015
85
University of Waikato
4/13/2015
86
University of Waikato
4/13/2015
87
University of Waikato
4/13/2015
88
University of Waikato
4/13/2015
89
University of Waikato
4/13/2015
90
University of Waikato
4/13/2015
91
University of Waikato
4/13/2015
Explorer: data visualization
Visualization very useful in practice: e.g. helps to determine
difficulty of the learning problem
WEKA can visualize single attributes (1-d) and pairs of
attributes (2-d)
To do: rotating 3-d visualizations (Xgobi-style)
Color-coded class values
“Jitter” option to deal with nominal attributes (and to detect
“hidden” data points)
“Zoom-in” function
92
4/13/2015
94
University of Waikato
4/13/2015
95
University of Waikato
4/13/2015
96
University of Waikato
4/13/2015
97
University of Waikato
4/13/2015
click on a cell
98
University of Waikato
4/13/2015
99
University of Waikato
4/13/2015
100
University of Waikato
4/13/2015
101
University of Waikato
4/13/2015
102
University of Waikato
4/13/2015
103
University of Waikato
4/13/2015
References and Resources
References:
WEKA website:
http://www.cs.waikato.ac.nz/~ml/weka/index.html
WEKA Tutorial:
Machine Learning with WEKA: A presentation demonstrating all graphical user
interfaces (GUI) in Weka.
A presentation which explains how to use Weka for exploratory data mining.
WEKA Data Mining Book:
Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools
and Techniques (Second Edition)
WEKA Wiki:
http://weka.sourceforge.net/wiki/index.php/Main_Page
Others:
Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques,
2nd ed.