Transcript R - ckw

10. Rotational Motion
1.
2.
3.
4.
5.
轉動
Angular Velocity & Acceleration
角速度和加速度
Torque
力距
Rotational Inertia & the Analog of Newton’s Law
轉動慣量和牛頓定律的比照
Rotational Energy
轉動能
Rolling Motion
滾動
Examples of rotating objects:
轉動物體的例子:
• Planet Earth.
地球
• Wheels of your bike.
你腳踏車的輪子
• DVD disc in the player.
放映機內的DVD碟
• Circular saw.
圓鋸
• Pirouetting dancer.
腳尖旋轉中的舞者
• Spinning satellite.
自轉中的衛星
How should you engineer the blades
so it’s easiest for the wind to get the
turbine rotating?
你應該怎樣設計旋槳才能讓渦輪最容
易被風轉動?
Ans. blade mass toward axis
答:旋槳的質量朝軸心累積
10.1. Angular Velocity & Acceleration
角速度和加速度
Polar coord ( r,  )
θ̂
r̂
Average angular velocity
ω
平均角速度

ˆ  ω
ˆ
ω
t
 = angular displacement 角位移
( positive if CCW 逆時針為正)
ω̂ // rotational axis
 in radians
1 rad = 360 / 2  = 57.3
轉軸
(Instantaneous) angular velocity

d
ˆ 
ˆ  ω
ˆ
ω  lim
ω
ω
t 0 t
dt
Angular speed:
角速率
Circular motion:
圓周運動
Linear speed:
直線速率

s r
v
d
dt

ds
r
dt
 in radians

1ds v

r dt r
逆時針
ω̂
(瞬時)角速度
ω̂
Example 10.1. Wind Turbine 風動渦輪機
A wind turbine’s blades are 28 m long & rotate at 21 rpm.
一部風動渦輪機的旋槳長 28 m ,且以 21 rpm 轉動。
Find the angular speed of the blades in rad / s,
求以 rad / s 為單位的旋槳角速率,
& determine the linear speed at the tip of a blade.
並決定旋槳末端的直線速率。
  21 rpm 
 21 rev / min   2 rad / rev 
60 s / min
v  r    28 m 2.2 rad / s   62 m / s
 2.2 rad / s
rpm =
revolutions
per minute
圈 / 分鐘
Angular Acceleration
We shall restrict ourselves to rotations about a fixed axis.
(Instantaneous) angular acceleration
(瞬時)角加速度
以下限於繞固定轉軸的旋轉
 d 
d2 
  lim


t 0 t
dt
d t2
ˆ
α  ω
Trajectory of point on rotating rigid body is a circle ( r = const)
旋轉剛體上一點的軌跡是個圓圈 ( r 為常數)。
at
v / / θˆ
a
ar
ω̂
角加速度
Its velocity v is always tangential:
其速度 v必在切線方向:
v  r  θˆ
Its acceleration is in the plane of rotation (   ) :
它的加速度在轉動平面上 (   ) :
d ˆ
d θˆ
dv
r
θ  r
a
 at  a r
dt
dt
dt
Tangential component: a  r d  θ
ˆ  r  θˆ
t
切線分量:
dt
2
ˆ
Radial component: a  r  d θ   v rˆ   r  2 rˆ
r
徑分量:
dt
r
d θˆ
d

rˆ
dt
dt
  rˆ
Angular vs Linear
角性比線性
Table 10.1 Angular & Linear Position, Velocity, & Acceleration
表 10.1 角和線位置,速度和加速度
Linear Quantity 線性量
Angular position 角位置 
Position 位置 x
Velocity 速度 v 
Angular Quantity 角性量
dx
dt
d v d2 x

Acceleration 加速度 a 
dt
d t2
Eqs for Constant Linear Acceleration
等直線加速的方程式
1
 v0  v 
2
v  v0  a t
v
Angular velocity 角速度

d
dt
d  d 

Angular Acceleration 角加速度  
dt
d t2
Eqs for Constant Angular Acceleration
等角加速的方程式
1
 0   
2
  0   t

1
x  x0  v0 t  a t 2
2
  0   0 t   t 2
1
2
v 2  v02  2a  x  x0 
 2   02 2   0 
Example 10.2. Spin Down
轉停
When wind dies, the wind turbine of Example 10.1 spins down with
constant acceleration of magnitude 0.12 rad / s2.
當風不再吹時,例 10.1 的風動渦輪機以 0.12 rad / s2 的等加速度停下來。
How many revolutions does the turbine make before coming to a stop?
渦輪機要轉幾圈才能停下來?
 2  02  2 
# of rev.
圈數
   

2
4 
2
2
0

0   2.2 rad / s 
2
4  3.14  0.12 rad / s
2

 3.2
離 O 最近, 最小。
10.2. Torque
力距
Rotational analog of force
力在轉動的比照
Torque力距:
離O 遠一些, 較大。
τ   τˆ
  r F sin 
τ̂
 plane of r & F
垂直於 r 和 F 所成面
[  ] = N-m ( not J )
= 牛頓米 (不是焦耳)
離 O 最遠, 最大。
  r
  sin 
Example 10.3. Changing a Tire
換車胎
You’re tightening the wheel nuts after changing a flat tire of your car.
你替你的車子換胎後要把輪子的螺絲上緊。
The manual specify a tightening torque of 95 N-m.
使用手冊規定上緊力距為 95 N-m。
If your 45-cm-long wrench makes a 67 angle with the horizontal,
如果你長 45-cm 的扳手與水平線成 67,
with what force must you pull horizontally to do the job?
你需用多少力才能完工?
  r F sin 
95 Nm   0.45 m F sin 180  67
F  230 N
Note:
sin      sin 
10.3. Rotational Inertia & the Analog of Newton’s Law
轉動慣量和牛頓定律的比照
把球在軸附
近轉很輕鬆
Linear acceleration:
直線加速
遠一點就
比較難
F ma
Rotating baton
旋轉中的指揮棒
(massless rod of length R + ball of mass m at 1 end):
( 無質量的棒長 R + 在一端質量為 m 的球 )
轉軸
  R Ft
Tangential force on ball :
施於球在切線方向的力:
Ft  m at  m  R
  m  R2  I 
I mR
2
= moment of inertia
轉動慣量
= rotational inertia
轉動慣量
of the baton
(指揮棒的)
計算轉動慣量
Calculating the Rotational Inertia
Rotational inertia of discrete masses
離散質點的轉動慣量
I   m i ri 2
i
ri = perpendicular distance of mass i to the rotational axis.
質點 i 離轉軸的垂直距離
Rotational inertia of continuous matter
連續物質的轉動慣量
I   r2 d m
r = perpendicular distance of point r to the rotational axis.
點 r 離轉軸的垂直距離
( r) = density at point r. 點 r 處的密度
  r 2   r  dV
質量單元 dm 提供轉動慣量 r2 dm。
啞鈴
Example 10.4. Dumbbell
A dumbbell consists of 2 equal masses m = 0.64 kg
on the ends of a massless rod of length L = 85 cm.
一個啞鈴包含一條無質量,長 L = 85 cm的桿子,和在其兩端兩個質量 m = 0.64 kg 的墜子。
Calculate its rotational inertia about an axis ¼ of the way from one end & perpendicular to it.
設轉軸在離一端 ¼ 桿長處,且與桿垂直。求啞鈴對此軸的轉動慣量。
GOT IT懂嗎 ? 10.2
 L  2  3 L  2 
5
I  m        m L2
8
 4   4  
5
2
  0.64 kg   0.85 m   0.29 kg m2
8
Would I
I會
(a) increase
比較大
(b) decrease
比較小
(c) stay the same
保持一樣
if the rotational axis were
若轉軸是
(b) (1) at the center of the rod 在桿的中點
(a) (2) at one end?
在桿的端點?
桿
Example 10.5. Rod
Find the rotational inertia of a uniform, narrow rod of mass M and length L about an axis
through its center & perpendicular to it.
一均勻長桿的質量為 M,長度為 L。求對於一垂直並通過它中點的軸的轉動慣量。
質量單元的質量為 dm,
長度為 dx。
I   r d m   r  dV
2
2
M 1 3

x
L 3
L /2

 L /2
M 2
L
12

L /2
 L /2
x2  dx

L /2
 L /2
x2
M
dx
L
環
Example 10.6. Ring
Find the rotational inertia of a thin ring of radius R and mass M about the ring’s axis.
一幼環的半徑為 R ,質量為 M 。求對環軸的轉動慣量。
2
  R2  R d
I   R2 d m
M R2

2
0

2
0
d

M
2 R
 R2  d m
 M R2
Pipe of radius R & length L :
半徑為 R ,長度為 L 的管子:
I 
L
0
 R3

2
0
R  R d d z
2

M
2 R L
M
2 L  M R2  R 2 d m

2 R L
I = MR2 for any thin ring / pipe
任何幼環或管子
盤
Example 10.7. Disk
Find the rotational inertia of a uniform disk of radius R & mass M about an axis
through its center & perpendicular to it.
一均勻的盤子半徑是 R ,質量是 M 。求對一垂直且通過它中心的軸的轉動慣量。
I   r2 d m
d m    2 r d r 
2M
I 2
R

R
0


r3 d r 
2M
r dr
2
R
1
M R2
2
M
 R2
Table 10.2. Rotational Inertia 轉動慣量
實心球對其直徑
幼棒對其中心
幼環或空桶對其軸
空心球對其直徑
幼棒對其末端
平板對垂直於它的軸
盤或實心桶對其軸
平板對通過它中心的軸
Parallel - Axis Theorem 平行軸定理
Parallel - Axis Theorem:
平行軸定理
軸通過球心
I  I cm  M d 2
軸移了 d = R 遠
Ex. Prove the theorem
for a set of particles.
習題:証明此定理適用
於一組粒子
GOT IT 懂嗎? 10.3.
Explain why the rotational inertia for a solid sphere is less than that of
a spherical shell of the same M & R.
解釋為甚麼一個實心球的轉動慣量會比 M 和 R 跟它一樣的球殼小。
I sphere 
2
M R2
5
I shell 
2
M R2
3
Mass of shell is further away from the axis.
球殼的質量離軸較遠。
Example 10.8. De-Spinning a Satellite
停止人做衛星的自轉
A cylindrical satellite is 1.4 m in diameter, with its 940-kg mass distributed uniformly.
一個圓柱形的人做衛星直徑為 1.4 m,其 940-kg 的質量分佈均勻。
The satellite is spinning at 10 rpm but must be stopped for repair.
衛星正以 10 rpm 自轉。可是它必需停下來做維修。
Two small gas jets, each with 20-N thrust, are mounted on opposite sides of it & fire tangent
to its rim. 兩部裝在它兩邊的小型噴氣引擎,每部推力 20-N,可朝它邊緣的切線方向噴射。
How long must the jets be fired in order to stop the satellite’s rotation?
這些引擎必需噴射多久才能停止衛星的自轉?
To stop the spin:
要自轉停止:
  0
Time required for a const ang accel
等角加速下所需時間
  r F sin   I 
t 

MR 
4F
10 rpm   2 rad / rev  
4  20 N 
1

min / s 
 60


t 


1

2R F   M R2  
2

 940 kg  0.7 m 
 8.6 s
Example 10.9. Into the Well
到井裏
A solid cylinder of mass M & radius R is mounted on a frictionless horizontal axle over a well.
一質量為 M,半徑為 R 的實心圓柱架在一口井上面無摩擦的水平軸上。
A rope of negligible mass is wrapped around the cylinder & supports a bucket of mass m.
一條質量可忽略的繩子捲在圓柱上,其末端吊着一個質量為 m 的桶子。
Find the bucket’s acceleration as it falls into the well.
求桶子掉到井裏時的加速度。
Let downward direction be positive.
設朝下的方向為正
Bucket 桶 : Fnet  mg  T  m a
Cylinder 圓柱:   T R

mg  I
a
I I
R
a
ma
2
R
g
a
1
I
mR 2

g
M
1
2m

T I
a
R2
GOT IT 懂嗎? 10.4.
Two masses m is connected by a string that passes over a frictionless pulley of mass M.
一條繩子兩端分別縛了質塊 m ;中間則擺在一個無摩擦,質量為 M 的滑輪上。
One mass rests on a frictionless table; the other vertically.
一質塊停在一個無摩擦的桌面上;另一個則是垂直吊下。
Is the magnitude of the tension force in the vertical section of the string
繩子在垂直部份的張力會
(a) greater than,
(b) equal to,
or (c) less than
(a)大於,
(b)等於,
或(c) 小於
that in the horizontal 在水平部份的 ?
Explain 請解釋.
(a):
There must be a net torque to increase the
pulley’s clockwise angular velocity.
必需有淨力距才能提高滑輪的順時針角速度。
10.4. Rotational Energy 轉動能
Rotational kinetic energy = sum of kinetic energies of all mass elements,
taken w.r.t the rotational axis.
轉動能 =所有質量單元對轉軸的動能的和。
Set of particles:
一組粒子:
K
1
1
2
m
v

mi ri 2  2


i
i
2 i
2 i
dK 

1
I 2
2
1
1
2
2
dm
v

dm

r
  
  
2
2
K rot   dK  
1
1
2
 r  d m   2
2
2
K rot 
1
I 2
2

r2 d m
Example 10.10. Flywheel Storage
飛輪儲能
A flywheel has a 135-kg solid cylindrical rotor
with radius 30 cm and spins at 31,000 rpm.
一飛輪以一個 135-kg ,半徑為 30 cm 的實心圓
柱為轉子,其轉速為 31,000 rpm 。
How much energy does it store?
它可存多少能量?
K rot 
1
1 1
I  2   M R 2   2
2
22

Flywheel for hybrid bus (30% fuel saving).
1
2 
 1

 135 kg  0.30 m   31,000 rpm  2 rad / rev   min / s  
4
 60


 32 MJ
~ energy in 1 liter of gasoline
一公升汽油的能量
2
Modern flywheels 10s of kW of power for up to a min.
現代的飛輪可提供數十 kW 的功率達一分鐘之久。
Carbon composite to withstand strain of 30,000 rpm.
碳基複合材料可承受 30,000 rpm 的應變。
Magnetic bearings to reduce friction.
磁性軸承可減低磨擦。
Supercondutor to reduce electrical losses.
超導體以減低電的損耗。
Energy & Work in Rotational Motion
旋轉運動的能和功
Work-energy theorem for rotations:
轉動的功-能定理:
2
W    d  K rot 

1
1
1
I  2f  I i2
2
2
Example 10.11. Balancing a Tire
平衡一個輪胎
An automobile wheel with tire has rotational inertia 2.7 kg m2.
一個汽車輪子連胎在內的轉動慣量是 2.7 kg m2。
What constant torque does a tire-balancing machine need to apply in order to spin
this tire up from rest to 700 rpm in 25 revolutions?
若要把這輪子在 25 圈內由靜止轉到 700 rpm,平衡輪胎的機器需用的等力距為何?
W    
1
I  2f
2
 1

2 
2.7
kg
m
700
rpm
2

rad
/
rev
min
/
s



 

I  2f
60





2
2  25 rev  2 rad / rev 
2
 46 N m
10.5. Rolling Motion
V = velocity of CM
ui = velocity relative to CM.
Composite object:
複合物體:
Ktotal 

1
mi v i2

2 i
滾動

1
2
m
V

u


 i
i
2 i
1
1
M V 2   mi ui2
2
2 i

質心速度
對質心的相對速度
1
mi  V 2  ui2  2V  ui 

2 i
 mi ui 
i
d
mi  ri  R cm   0

dt i
Ktotal  Kcm  Kinternal
Moving wheel:
運動中的輪子:
Ktotal 
1
1
M V 2   u 2 dm
2
2
Ktotal 

1
1
M V 2   2  r 2 dm
2
2
1
1
M V 2  I cm  2
2
2
 is w.r.t. axis thru CM
 是對通過質心的軸來算
V = velocity of CM 質心速度
Moving wheel:
運動中的輪子:
Rolling wheel:
滾動中的輪子:
質心的運動加上…
Ktotal 
1
1
M V 2  I cm  2
2
2
X  R
 is w.r.t. axis thru CM
 是對通過質心的軸來算
V  R
…相對於質心的運動等於…
磨擦防止輪子滑動
…輪子上單獨一點的運動。
輪子底部的速度是零!
這兩個速度在底部的和為零
Example 10.12. Rolling Downhill
滾到山下
A solid ball of mass M and radius R starts from rest & rolls down a hill.
一個質量為 M ,半徑為 R 的實心球從靜止滾往山下。
Its center of mass drops a total distance h.
它的質心總共落下 h 遠。
Find the ball’s speed at the bottom of the hill.
求球在山底的速率。
Initially:
開始時:
E0  K trans 0  K rot 0  U 0  M g h
Finally:
最後時:
E  Ktrans  K rot  U

1
1
M v2  I  2
2
2
1
12
 v 
 M v2   M R2   
2
25
R
E  E0
Note: v is independent of M & R
注: v 與 M 和 R 無關
 v
10
gh
7
2


7
M v2
10
2g h
sliding ball
滑動的球
GOT IT 懂嗎? 10.5.
A solid ball & a hollow ball roll without slipping down a ramp.
一個實心球和一個空心球在沒有滑溜的情況下滾下一個斜坡。
Which reaches the bottom first? Explain.
那一個先到底?解釋之。
Solid ball.
實心球
Smaller I  smaller Krot
I 較小  Krot 較小
 larger v.
 v 較大