Transcript 1. dia

Scaling functions for finite-size corrections in EVS
Zoltán Rácz
Institute for Theoretical Physics
Eötvös University
E-mail: [email protected]
Homepage: cgl.elte.hu/~racz
Motivation: Do witches exist if there were 2 very large hurricanes
in a century?
Introduction: Extreme value statistics (EVS) for physicists in
10 minutes.
Collaborators:
G. Gyorgyi
N. Moloney
K. Ozogany
I. Janosi
I. Bartos
Problems: Slow convergence to limiting distributions.
Not much is known about the EVS of correlated variables.
Idea:
EVS looks like a finite-size scaling problem of critical
phenomena – try to use the methods learned there.
Results:
Finite size corrections to limiting distributions (i.i.d. variables).
Numerics for the EVS of 1 / f  signals ( 0     ).
Improved convergence by using the right scaling variables.
Distribution of yearly maximum temperatures.
Extreme value statistics
Y
is measured:
y1 , y2 ,..., yN
z N  maxy1 , y2 ,..., yN 
yi  h(ti )
Question: What is the distribution
of the largest number?
Aim: Trying to extrapolate to
values where no data exist.
P0 ( y )
Logics:
Assume something about
yi
E.g. independent, identically distributed
y
Use limit argument: ( N  )
Family of limit distributions (models) is obtained
Calibrate the family of models
by the measured values of xN




P( z N )
zN
Extreme value statistics: i.i.d. variables
z
Y
is measured:
y1 , y2 ,..., yN
F ( z )   dyP0 ( y)
P0 ( y )

z N  maxy1 , y2 ,..., yN 
GN (z) probability of z N  z
y
z
GN ( z)  [F ( z)]
N
Question: Is there a limit distribution for N   ?
lim
N 
GN (aN x  bN ) 
lim
N 
[ F (aN x  bN )]N  G( x)
Result: Three possible limit distributions depending
on the tail of the parent distribution, P0 ( y ) .




P( z N )
z
zN
z  aN x  bN
Fisher & Tippet (1928)
Gnedenko (1941)
Extreme value limit distributions: i.i.d. variables
P0 ( y )
Fisher-Tippet-Gumbel (exponential tail)
GFTG ( x)  exp( exp( x))
e
 ya
y
( y0  y) 1
y0
Fisher-Tippet-Frechet
 1
GFTF ( x)  exp(  x  )
0
y
GW ( x)  exp( ( x) )
1
x0
x0
W
 FTF
  5/ 2
( x   x ) / 
x0
x0
Weibull (finite cutoff)
Characteristic shapes
of probability densities:  I ( x)  dGI ( x) / dx
 FTG
(power law tail)
( x   x ) / 
 1
( x   x ) / 
Gaussian 1 / f  signals
h
Independent, nonidentically distributed Fourier modes
(hk ) ~ e
 L
k
k

hk
0 .5
1
1/ f
White
noise
noise
EVS
)
Berman, 1964
L
 w2   (h  h) 2  L1k  hk  ~ L 1
2
2
EdwardsWilkinson
0
x
0
 hk  ~ k 
with singular fluctuations
h(x)
2
2
Random
walk
MajumdarComtet, 2004
MullinsHerring
4
Random
acceleration


Single mode,
random phase
 0
Slow convergence to the limit distribution (i.i.d., FTG class)
P0 ( y )
0
e
 y2
0 .5
1
y
4
The Gaussian results are characteristic for the
whole FTG class
except for
y0
2
P0 ( y) ~ e y


 0
Finite-size correction to the limit distribution
de Haan & Resnick, 1996
Gomes & de Haan, 1999
z
P0 ( y )
F ( z )   dyP0 ( y)

e
 y2
z
P ( x, N ) 
y
dG N ( x) d
 [ F (a N x  bN )] N
dx
dx
substitute
Fix the position and the scale of P( x, N ) by
x  0
x 2   1
aN , bN
P( x, N )  FTG ( x) 

expand in N
is determined.
1
1 ( x)  ...
ln N
1
1 ( x)   FTG ( x) a 0 x  a 20  1  3  a 0 x  e a 0 x   e 2 ( a 0 x  )
2

a0  6 / 
  0.577...
 0
Finite-size correction to the limit distribution
For Gaussian P0 ( y )
1 ( x ) 

1
 FTG ( x) a 0 x  a 20  1  3  a 0 x  e a 0 x   e 2 ( a 0 x  )
2

Comparison with simulations:
How universal is 1 ( x) ?
Signature of (ln N )2 corrections?
 0
Finite-size correction: How universal is 1 ( x) ?
z
P0 ( y )
F ( z )   dyP0 ( y) ~ 1  e f ( z )
e

 y2
Determines universality
z
f ( z) ~ z 2
1 ( x)
Gauss class
f ( z) ~ z
1 ( x)
Exponential class
f ( z) ~ z p
p -1
1 ( x) 
1 ( x)
p
different (known) function
f ( z) ~ z  exp(az)
Exponential class is unstable
f ( z) ~ z  z
S
f ( z ) ~ z  a ln(1  z )
a 1
Exponential class
a 1
Gauss class
Gauss class eves for 0  s  1
Weibull, Fisher-Tippet-Frechet?!
Maximum relative height distribution (   2 )
0 .5
0
hm
h
h(x)
hm
x
L
0
Majumdar & Comtet, 2004
1
2
4


maximum height measured
from the average height
P(hm , L)  ?
Connection to the PDF of the area under
Brownian excursion over the unit interval
Choice of scaling
x  hm /hm  0
~e
hm  0  12wL ~ L
6 x 2
Result: Airy distribution
~ x 5e a / x
2
hm  0 P(hm , L)  0 ( x)
Finite-size scaling   2 :
Schehr & Majumdar (2005)
Solid-on-solid models:
H  K 1 hi  hi 1
 hm  0 P(hm , L)   0 ( x) 
 0 ( x)
L
1
0 ( x)  ...
2L
hm  0  12wL ~ L
x  hm /hm  0
p
1


 hm   c0  hm  0 1 
 ...
2L


0 ( x)
x
Finite-size scaling   2 : Derivation of
 hm  0 P(hm , L)   0 ( x) 
Cumulant generating function
PL ( y)  
dk
2
Scaling with


(ik ) m 
exp ik ( y  c1 )  
cm 
m
!
m 2


hm  0  L
y  hm  0 x
 L ( x)  hm  0 PL (hm  0 x)
 L ( x)  
dq
2
Expanding in


(iq) m ( 0) 
(0)
(1) 1
exp iq( x  c1  c1 L )  
cm 
m
!
m2


L1 :
c1(1)
 L ( x)   0 ( x)  1 0 ( x)
L
 hm  0
Shape relaxes faster than the position
Assumption:  hm  L carries all
the first order finite size correction.
c1  hm  L  c1(0) L  c1(1) L 1  ...
cm2  cm(0) Lm  ...
k  q / hm  0
1
0 ( x) …
2L
Finite-size scaling   1 : Scaling with the average
Cumulant generating function
PL ( y)  
dk
2
Scaling with


(ik ) m 
exp ik ( y  c1 )  
cm 
m 2 m!


c1   hm 
y  hm  x
k  q / hm 
 L ( x)  hm  PL (hm  x)
 L ( x)  
dq
2
Expanding in



cm( 0)
(iq) m
exp iq( x  1)  
( 0)
(1)  1 m 
] 
m  2 m! [c1  c1 L

L1 :
c1(1)
 L ( x)   0 ( x)  ( 0)  1 [(x  1)0 ( x)   0 ( x)]
c1 L
Assumption:  hm  L carries all
the first order finite size correction
(shape relaxes faster than the position).
c1  hm  L  c1(0) L  c1(1) L  1  ...
cm2  cm(0) Lm  ...
Finite-size scaling   1 : Scaling with the fluctuations
Assumption: c2 relaxes faster than
any other cm  2 .
Cumulant generating function
PL ( y)  
dk
2
Scaling with
 L ( x)  
dq
2


(ik ) m 
exp ik ( y  c1 )  
cm 
m 2 m!


  c2
y  c1
x
k  q /

 L ( x)   PL (c1   x)
c2  (hm  hm )2  L  c2(0) L2  c2(1) L2 2  ...
cm3  cm(0) Lm  ...


cm( 0)
q 2  (iq) m
exp iq( x  1)   

2 m3 m! [c2( 0)  c2(1) L 2]m / 2 

Expanding in
L 2 :
c2(1)
 L ( x)   0 ( x)  ( 0)  2 [0( x)  x0 ( x)   0 ( x)]
2c2 L
Faster convergence
Finite-size scaling: Comparison of scaling with hm  and
hm 
scaling

scaling
Much faster convergence
.
Possible reason for the fast convergence for (   1 )
Width distributions
Antal et al. (2001, 2002)
hm
h
 w2  L P( w2 )   x 
 w 2  ~  hm 
h(x)
x
L
0
 w2   (h  h) 2  L1k  hk  ~ L 1
2
w2
Cumulants of
( w2 )
m
c
~L
( w2 )
1
c
m ( 1)
( 1)
~L
  2,4

bm
1
m ( 1)  
~
L
a


...

 m

m
m 1
L
n 1 n


x  w2 /  w2 
L


b1
1   1  ...
 L

L 1 , L 3
c
( w2 )
2
( 1)
~L


b2
1  2 1  ...
 L

L 3 , L 7
Extreme statistics of Mullins-Herring interfaces (   4 )
and of random-acceleration generated paths
0
0 .5
1
 0 ( x)
x  hm / hm 
x  hm / hm 
 0 ( x)
x  (hm  hm ) / 
x  (hm  hm ) / 
2
4


Extreme statistics for large
.
0
0 .5
1
2
(hk ) ~ e
 0 ( x)

4
 L
k
k

hk

2
k 2


2
k1
 
Only the k1 mode remains
x  hm / hm 
hm  hk1
 0 ( x) 
  
x exp  x 2 
2
 4 
hm   0

(hmax ) ~ e
 L hk1
2
| hk1| d | hk1 |
Skewness, kurtosis
Distribution of the daily
maximal temperature
P(Tmax )
Scale for comparability
Tmax   0
s  skewness
2
Tmax
 Tmax  2   1
Calculate skewness
and kurtosis
Put it on the map
Reference values:
sFTG  1.1...  FTG  2.4
  curtosis
Yearly maximum temperatures
Distribution in

scaling
Corrections to scaling