Transcript ppt

Cornell, 2011-08-05
M. Sánchez del Río
Slide: 1
X-ray optics simulations and modeling
software for the
ESRF Upgrade Programme
Manuel Sánchez del Río
ESRF, BP 220, F-38043 Grenoble Cedex
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 2
Contents
•
An introduction to the ESRF and the Upgrade Programme
•
Software tools for optics calculations (XOP and SHADOW)
•
Examples of simulations:
• Examples of simulations with SHADOW
• Recent calculations for ESRF Upgrade
•
SHADOW3, Software projects
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 3
The ESRF
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 4
ESRF Science Programme 2009-2018
•
•
•
•
A Leading Synchrotron Radiation Facility in the next 10 to 20 years
High Performance ESRF – Necessary for the European Context
Evolution of the Scientific Case in Synchrotron Science and Applications
Increasing number of User Communities
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 5
Five Highlight Reference Areas
Provide state-of-the-art Analysis Tools to Discover the Nano-World
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 6
“Conventional” Experiment :
Average Properties
“Future” Experiment :
Distribution of Properties
Large Beam
Small Beam
• 105 – 106 objects illuminated
• Goal: Study Single nano-Objects
Nano-beams Needed to study
Nano-Sized Model Systems
High Impact expected in Programmes such as:
- Nano-Technology
- Life Science and Health
- Energy and Transport
- Environment and Heritage
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 7
Beamlines
Use of state-of-the-art optics, based on recent developments in reflective (KB), refractive and diffractive
(crystals, including diamond, and multilayer)
High demand in Engineering
• Stability
• Vibration
• Thermal control
Sample Environment (including micropositioning)
The design and optimization of the Optics requires (or profit from) performant simulation software
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 8
X-ray optics
• Reflective optics
• Mirrors
• Refractive Optics
• Lenses
• Diffractive optics
• Gratings
• Multilayers
• Crystals
Cornell, 2011-08-05
Software Tools
• Basic aspects
(XOP)
• Mechanical and
thermal aspects
(FEM)
• optics
• Ray-tracing
(SHADOW)
• Extended raytracing
• Dynamical theory
• Coherent optics
M. Sánchez del Río
Slide: 9
XOP
• Characteristics
• Long history (>10 years)
• Large user community (>400 users in tens of
laboratories)
• Multiplatform (Windows, Unix, MacOS)
• Freely distributed to users
• Collaboration work ESRF (M Sanchez del Rio)-APS
(Roger Dejus)
• Written in IDL (using Fortran and C modules).
Embedded license.
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 10
Optional
Extensions
KERNEL
Xop Functionality
Sources:
Optics:
•BM
•Wiggler
•Undulators
•Mirrors
•Crystals
•etc
XAID
(XAFS)
(ID24-ID26)
ShadowVUI
(Ray tracing)
Cornell, 2011-08-05
DABAX:
•Data storage
•Optical
constats
•X-ray data
IMD (Windt)
(Multilayers)
Analysis &
Visualization:
•Xplot (XY)
•Xplot2D (images)
(ID22,ID18F)
•Exodus (ID26)
•FuFiFa (ID22)
Etc…
M. Sánchez del Río
Slide: 11
Perfect crystal diffraction profiles
Bragg Crystal
DE/E~1.4×10-4
Laue Crystal
q-qB[mr]
Cornell, 2011-08-05
q-qB[mr]
q-qB[mr]
M. Sánchez del Río
Slide: 12
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 13
On-line Data Analysis
Exodus
•quick data cleaning
•averaging,
•visualization etc.
from SPEC and ASCII files
Xplot
XY plot,
acces to SPEC files
(scans+MCA+MESH)
Xplot2D
images
FuFiFa
Functional Fitting Facility
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 14
ShadowVUI
Entirely new interface that uses the
standard SHADOW calculation engine
•
“Easy” to use
•
High performance graphics
•
Macro language
•
Tutorials
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 15
SHADOW
Scientific motivation: Grating
monochromator design, TGM, ERG,
toridal, spherical mirrors.
Monte Carlo ray tracing program
designed to simulate X-ray optical systems
What SHADOW can do?
•
Requirements
• Accuracy and reliability
• Easy to use
• Flexibility
• Economy of computer resources
• From VAX-11 Computers (1985) to Unix
including Windows and Mac’s
• Fortran
Efficient MC approach
•
•
•
•
•
•
Reduced number of rays
Exact simulation os SR sources
Vector calculus
Modular
User-interface
Available to users
Two years development, plus ~10 years of
upgrading
Cornell, 2011-08-05
•
•
•
Beam cross sections (focal spot, PSF,
etc)
• source characteristics (dimensions,
depth, emittances)
• vignetting (apertures, dimension of
oe’s)
• effect of mirror shape: aberrations,
errors…
• effect of mirror imperfections (slope
errors, roughness?)
Energy resolution
Flux and power (number of photons at a
given position, absorbed/transmitted
power, etc)
Other aspects? (polarization, coherence
effects, etc.)
M. Sánchez del Río
Slide: 16
Monte Carlo (source model)
INVERSION
REJECTION
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 17
Trace (the beamline)
z
x0  ( x0 , y0 , 0)
v  (vx , v y ,  1)
x


ko  ki  2 ki  n n
y
Energy, Intensity
z
z
p
qi
q
x
x  x0  tv
z0
y
x
Cornell, 2011-08-05

M. Sánchez del Río
Slide: 18
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 19
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 20
Energy resolution
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 21
Laue crystals
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 22
Physical models
SHADOW SIMULATION
Q [rad]
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 23
Vignetting/Spatial resolution (grid_pattern.ws)
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 24
gratings
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 25
ID24 upgrade
Detector
68 m
3rd refocusing mirror
64.55 m
HFM-S
HFM-L
29.5 m
PLC-S
64.2 m
PLC-L
52.5 m
VFM-S
VFM-L
33 m
BRAGG
• p=33.7 m q=0.2-2 m => M=168.5-16.5
• E=5-27 keV
LAUE
• p=22 m q=0.2-2 m => M=110-11
• E=5-50 keV
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 26
Hyperbolic crystals
Hrdy has shown that for focusing x-rays using a Laue crystal with atomic planes
perpendicular to the crystal surface, the crystal surface must follow an hyperbola.
Hrdy, J., 1990. POLYCHROMATIC FOCUSING OF X-RAYS IN LAUE-CASE DIFFRACTION - (HYPERBOLICAL
SPECTROGRAPH). Czechoslovak Journal of Physics 40, 1086-1090.
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 27
Conic equation
c0 x2  c1 y2  c2 z 2  c3 xy  c4 yz  c5 xz  c6 x  c7 y  c8 z  c9  0
p=2790, q=120 and qB=14.3deg.
ellipse2 (hyperbola2) is obtained from
ellipse1 (hyperbola1) by symmetry with
respect to the (x,z) plane (i.e., y->-y).
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 28
Conic crystals
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 29
Image profiles
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 30
MASSIF layout based on linear CRLs (astigmatic focusing)
?? m
51.5 m
48.6 m
43.3 m
41.1 m
CRL2h
CRL1v
27 m
CRLv
source
HP
slits
CRL1h
CRL3h
sample 3
E = 14.1 keV
sample 2
E = 14.3 keV
sample 1
E = 14.2 keV
E = 14 keV
source size (high-b):
40 x 900 mm2
spot at sample 1:
spot at sample 2:
spot at sample 3:
100 x 100 mm2
100 x 100 mm2
20 x 20 mm2
source-to-sample 1: 43.3+6.5 = 49.8 m
source-to-sample 2: 48.6+8 = 56.6 m
source-to-sample 3: 51.5+5.5 = 57 m
CRLv:
2v) L1=45m L2=15.5m d=50mm (def 15.5m-sample vs 15.9m-focus)
3v) L1=45m L2=15.9 N =12 R = 500mm Ag=1.4mm Aef=1.5mm d=14mm
CRL1v: L1 = 12.7 m L2 = 5.5m N = 11 R = 500mm d = 50mm
CRL1h: L1 = 46 m L2 = 4.5 m N = 20 R = 300mm d = 78mm Ae =1mm
CRL2h: L1=51.5m L2=4.5m N = 20 R = 300mm d = 78mm Ae =1mm
CRL3h: L1=57m L2=1.5m N=62 R=300mm Aef=550mm d=13.5mm
Total number of lenses N = 125 = 102(300) + 23(500)
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 31
CRL: What are the geometrical limits ?
F
N
2 Rd
L. Alianelli, M. Sanchez del Rio, K.J.S. Sawhney, Ray-tracing simulation of
parabolic compound refractive lenses. Spectrochimica Acta Part B: Atomic
Spectroscopy 62 (2007) 593-597.
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 32
Lenses for focusing collimated light
n1 n0 n1  n0
 
q p
R
aq
Cornell, 2011-08-05
n n
n0
; bq 1 0
n1  n0
n1  n0
M. Sánchez del Río
Slide: 33
Point to point focusing with lenses…
Descartes 1637
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 34
SHADOW3
•
•
•
•
•
•
•
Fully compatible with existing version (only Kernel, no graphics, menu, etc.)
Prepare the framework for the “new challenges”
Maintain Shadow’s flavor: SHADOW users will feel “comfortable” with it
Remove present limitations
Transform f77 to f95 and full use of modular structure
Supported for Windows, Linux and MacOS
Full compatibility of ShadowVUI
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 35
SHADOW3
GPU parallelization
API
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 36
(Short) future SHADOW
Implementation of ANY crystal structure (Quartz) - Plasma Diagostics (PPPL+MIT)
Generic source (read CDFs from external programs)
Upgrade Python tools to the IDL level
Improve the IDL API and converge to Python
Update the x-ray library (scattering factors, cross sections)
Use of xraylib (https://github.com/tschoonj/xraylib)
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 37
Future SHADOW: Partial coherence?
Usually in SHADOW, rays are
incoherent (we add ray’s
intensities)
But we can add ray’s electric
fields and then modulesquare to get the intensity
Switch Ray optics <-> Wave
optics
Partial coherent beams
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 38
• Change of the ray direction
(geometrical model)
• include the change ray
intensity (physical model)
MOSAIC
CRYSTALS
• Macroscopic model (SHADOW)
MULTILAYERS
Future SHADOW: From Macro to MicroModels
• follow the evolution of each
ray inside the element
• Lots of rays needed (Monte
Carlo within the optics)
NANOFOCUSING!
Cornell, 2011-08-05
MOSAIC
CRYSTALS
• Microscopic model
L. Alianelli, Ph.D. Thesis (2002)
M. Sánchez del Río
Slide: 39
World-wide x-ray sources and optics collaboration
Cornell, 2011-08-05
…
NEW GUI (XOP style?)
SRW
•
•
SPIE Meeting Conference: Advances in Computational Methods for X-Ray
Optics II CONFERENCE OP32
Workshop on Partial Coherence
Ideas for collaboration
Presentation of a MofU draft for maintenance and development of x-ray
OPEN SOURCE software
Discuss how the collaboration can work
SHADOW
•
M. Sánchez del Río
Slide: 40
Thank you!
Cornell, 2011-08-05
M. Sánchez del Río
Slide: 41