periodicity - Gleason Chemistry

Download Report

Transcript periodicity - Gleason Chemistry

History & Trends of the Periodic Table
Year of Discovery
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The first person to discover an element using scientific inquiry was Hennig
Brand, a German scientist who discovered phosphorus (P) in 1649.
Brand was an alchemist attempting to obtain gold by
distilling his urine. Eventually, the distillate began to glow.
Phosphorus means "light bearing"
In 1789, a French scientist, Antoine Lavoisier defined what was meant by a
chemical element and drew a table that contained 33 known elements
Elementary Treatise on Chemistry
The book is considered to be the
first modern chemical textbook.
Element Grouping
Johann Dobereiner – Noticed several “triads” of similar
behaving elements (1829)
His practice of grouping elements led to the concept of
periodicity (The repeating of chemical properties on a
sequential basis)
Element Organization
John Newlands – Noticed periodicity based
on mass & chemical properties.
• In 1864, he classified the 62 known elements in 7 groups.
• Law of Octaves – every 8th (known) element was similar.
• He was ridiculed for comparing to the musical scale.
• His contribution wasn’t recognized till years later.
Element Organization
Dmitri Mendeleev (1869) “Father of the periodic table”
• Also arranged elements by mass and property, but included
empty space for irregular jumps in mass.
6X 7Y
9Z
→
6X 7Y
9Z
• These accounted for many
undiscovered elements predicted
later including Ge, Ga, & Sc
• Made the PT well known.
x Chemical Properties
Mass →
Modern Periodic Law
Problems arose as new elements were discovered and didn’t
always fit nicely when ordered by mass.
12C 14N 16O
✔ Consistent
127I 128Te 131Xe
53
52
54
✘ Inconsistent
Henry Moseley (Rutherford’s assistant)
• Discovered a method for counting protons using x-rays
• Found that if elements were organized by atomic
number, and not mass, the problems disappeared. (1912)
Periodic law – Properties vary with their atomic numbers
in a periodic way. (Current basis of P.T. organization)
Periodic
Elements
Atomic Number - Number of protons
• Basis of Periodic Table organization.
• Distinguishing attribute of each element (always an
integer)
• Name - full name of element
• Symbol - 1,2, or 3 letter representative symbol
• Atomic Mass - weighted average mass of relative isotopes
• Atomic mass units (amu) or grams/mole
Groups (families) - Vertical columns
• Share chemical traits (properties)
• IUPAC - numbered groups 1 - 18
• NACPT notation - 1A - 8A / 1B - 8B
Periods (series) - Horizontal rows
• Indicates highest energy electron level n (1-7)
Other Divisions:
– Representative elements - (1A - 8A) (s and p block)
• Consistently "periodic" based on valence electrons
– Transition metals - (1B - 8B) (d and f block)
• Many exceptions exist for electron configurations
• Characteristics are less periodic
• f-block (inner-transition metals) (Lanthanide and
Actinide series)
IUPAC: 1-18
NACPT: 1A-8A
1B-3B
Classification of the Elements
*Noble gases are part of the
Representative elements
Valence electrons are the outer shell electrons. The
valence electrons are the electrons that take part in
chemical bonding.
Group
e- configuration
# of valence e-
1A
ns1
1
2A
ns2
2
3A
ns2np1
3
4A
ns2np2
4
5A
ns2np3
5
6A
ns2np4
6
7A
ns2np5
7
Core electrons: all non-valence electrons
Octet (8) Rule
• Many chemical properties are determined by an
atom’s valence electrons
• Atoms seek to obtain an electron configuration like
that of a Noble Gas
Neon
1s2 2s2
2p6
• A full outer electron shell has 8 valence electrons
“oct”-et (of representative elements)
Metals (~75% of elements)
• Left and middle of periodic table
• Lustrous (shiny)
• Ductile
• Malleable
King of Random: The Metal Melter
www.youtube.com/watch?v=GCrqLlz8Ee0
• High melting points (~950 – 3,700 °C)
• Good conductors of heat and electricity
Nonmetals (~18% of elements)
• Top Right corner of periodic table + Hydrogen
• Typically gaseous or soft, brittle solids
• Exceptions: Bromine(l) and Cdiamond (s)
• Low melting temps (if solid)
• Poor electrical conductors (Carbon is a thermal conductor)
• Combine with other non-metals to form molecules.
• Combine with metals to form Ionic compounds
Discovery of the 6 Noble Gases (1898 – 1900)
• Difficult to detect due to inert nature
• Ramsay reacted N2(g) with Mg(s) to form Mg3N2(s) along with
a volume of unknown gas that would not react.
• Using a discharge tube, they noted the
atomic line emission spectrum was unique.
• It was called Argon “the lazy one”
Sir William Ramsay
Metalloids (~7% of elements)
• Adjacent the Stair-step line that separates metals
from non-metals
• Have shared properties of both metals and non
metals
• Metallic luster
• Brittle or crumbly
• Fair conductors
Radioactive Elements
All elements after #83, starting
with Polonium, are radioactive
(element breaks down rapidly)
Trans-Uranium Elements
– Only elements up to atomic 92 (Uranium) have been
found naturally occurring (trace amounts of Pu & Np)
– Nuclear reactions have produced the remaining
elements synthetically
Crash Course: The Periodic Table
www.youtube.com/watch?v=0RRVV4Diomg
Periodic Trends
(Size)
(Losing an electron)
(Gaining an electron)
Sharing electrons)
Effective nuclear charge (Zeff) is the attractive force
from the nucleus felt by an electron with all forces
taken into account.
Shielding effect: Repulsive forces from other electrons that
lessen the net force felt from the positive nucleus
Harder to remove, b/c no shielding
effects (e-/e- repulsions)
Effective Nuclear Charge (Zeff  Total – Core electrons)
Z
Core (e-) Zeff
Radius (pm)
11Na
11
10
1
186
12Mg
12
10
2
160
13Al
13
10
3
143
decreasing Zeff
Increasing Zeff
Additional P+ have
greater pull than
additional valence eGreater Zeff leads to
smaller atomic radius
Decreasing Atomic radii
Only representative elements shown
Zeff = 1.28
Zeff = 3.14
Zeff = 5.76
Per n, adding
Protons has greater
effect than adding
valence e-
Trends in Atomic Radii
Atomic radii increases going down group (adding n)
5
Period:
6
4
3
2
Atomic radii get smaller as atoms
get more massive across a period
(133 pm)
(78 pm)
(152 pm)
(72 pm)
Cation is always smaller than atom from which it is formed.
Same # of protons (+) pulling in less electrons (-)
Anion is always larger than atom from which it is formed.
More electrons (-) being held by Same # of protons (+)
Comparison of Atomic Radii with Ionic Radii
Cations get smaller
Anions get larger
25
The Radii (in pm) of Ions of Familiar Elements
1 m = 1 x 1012 pm
Ionization energy is the minimum energy (kJ/mol) required to
remove an electron from a gaseous atom in its ground state. (Cation
forming)
Filled n=1 shell
Filled n=2 shell
Noble gases have full valence orbitals
= very stable = unreactive
Filled n=3 shell
Filled n=4 shell
Filled n=5 shell
Alkali metals have 1 valence e- and easily give it up
General Trends in First Ionization Energies
Decreasing First Ionization Energy
Increasing First Ionization Energy
Very Likely to
give away electrons
Very unlikely to
give away electrons
Higher energy levels electrons can more readily leave
(further from nucleus, more core electrons shielding ~ lower Zeff)
Periodic Videos: Cs in water
www.youtube.com/watch?v=D4pQz3TC0Jo
I1 < I2 < I3 < …
“Typical” last
Ionization:
Note the large jump
in energy afterward
Electron affinity is the negative of the energy
change that occurs when an electron is accepted
by an atom in the gaseous state to form an anion.
X (g) + e-
X-(g)
F (g) + e-
F-(g)
EA = +328 kJ/mol
O (g) + e-
O-(g)
EA = +141 kJ/mol
Larger release of energy indicates
more stable anion (more likely to gain electron)
Least likely
Halogens most likely to gain one electron
Why would Alkali metals have a higher affinity than Alkaline Earth metals?
Why is Nitrogen 0? Half-full p-subshell is more stable than 4/6
Electronegativity – relative attraction of shared
electron cloud in covalent bonds (in molecules).
+
d
d
H
F
Fluorine has highest
electronegativity
Polar
No values
because they
don't form
compounds
Periodic trend summary
• Effective Nuclear charge – nuclear pull “felt” by electrons
• Atomic radii - Distance between nucleus and outer e-
• Ionic radii - same as atomic radii, but distance for
each atom's common ion
• Ionization energy - energy for atom to lose an electron (lower
means more likely to lose an electron)
• Electron affinity - energy released when an atom gains an
electron (higher means more likely to gain electron)
• Electronegativity - measure of each atom's attraction towards
bonding electrons in a molecule
Practice Questions
1. a) Place the neutral atoms in order from smallest to largest
Radius: N, Na, P
b) Explain what is causing the change across a period (L to R).
2. a) Place the neutral atoms in order from smallest to largest
Ionization energy: K, Se, Rb
b) If an atom has a low value for Ionization energy, what action
is this specifically referring to and how likely will it happen?
3. The first six Ionization energies (kJ/mol) are listed sequentially
for Aluminum. Make two observations from the data.
Practice Questions
4. a) Place the atoms in order from smallest to largest electron
affinity energy: Ca, Se, Kr
b) If an atom has a low value for electron affinity, what action
is this specifically referring to and how likely will it happen?
5. What happens to the relative atomic radius of neutral Potassium
atoms and Bromine atoms after they ionize and combine to
form KBr?
6. Place the elements in order of increasing electronegativity:
F, As, N, Ne
Descriptive Chemistry
• Study of the elements and the compounds
they form.
• Physical and Chemical Properties
• Similar for each group/family
Hydrogen
•
•
•
•
•
Lightest and most abundant element
Non metal (though displayed in 1A)
Considered a family of its own
Colorless, odorless, and tasteless gas
Has chemical properties similar to both alkali
metals (reactivity) and halogens (physically).
• Occurs "di-atomically" H2, not H
1s1
The Alkali Metals Group 1A Elements
1
(ns )
M
M+1 + 1e- (loss of 1 valence e-)
2M(s) + 2H2O(l)
2MOH(aq) + H2(g) (Hydrogen displacement)
4M(s) + O2(g)
2M2O(s)
(Combustion/Oxide formation)
The Alkali Metals: Group 1A Elements (ns1)
Very chemically reactive; Lowest Ionization energies
Form +1 charge cations
Conductive and Lustrous
Soft at room temperature
React with water
• Lithium batteries
• 133Cs in atomic clocks
• Na+ and K+ : nervous system
transmission, travels across
membrane synapses
Increasing reactivity
•
•
•
•
•
Alkaline-Earth Metals/Group 2A Elements (ns2)
M
M+2 + 2e-
M(s) + 2H2O(g, steam)
M(OH)2(aq) + H2(g)
Luminescent & radioactive
Alkaline-Earth Metals
• Solid at room temperature
• Forms +2 charge cations
• Reactive at higher periods
• Milk of Magnesia (Mg(OH)2)
• Strontium: flares, red fireworks
• Barium: rat poison,
gastrointestinal x-ray, green in
fireworks
SciShow: Strontium: It Knows Where You've Been
https://www.youtube.com/watch?v=rrDJ8Ri3pXk
Boron Family: Group 3A Elements
2
1
(ns np )
Tend to form +3 ions or form 3 bonds
Boron: found in lab glassware
Aluminum: very common in alloys (light weight)
Indium rods used in nuclear reactors to
regulate the speed of Uranium decay.
Carbon Family: Group 4A Elements
2
2
(ns np )
• Typically do not form ionic bonds, but covalent
• Carbon: organic chemistry: vitamins/drugs. Main
component of biomolecules (protein, fat, sugar, DNA)
• Silicon: ¼ of Earth’s Crust; heavily used in electronics
as a semiconductor
Allotropes:
Multiple forms
of same element
C (graphite)
C (diamond)
Nitrogen Family: Group 5A Elements (ns2np3)
• Tend to form 3 covalent bonds or -3 ions
• Nitrogen: most abundant gas (N2), found in all proteins & DNA
• Phosphorous: Very reactive, match tips; DNA, ATP, & lipids
Periodic Videos: Phosphorous
www.youtube.com/watch?v=uk5aXEvmTbc
Common solder alloy
Very Toxic;
As2O3: “Inheritance powder”
Non-Toxic:
Pepto-Bismol
Bi oxide
Oxygen Family: Group 6A Elements (ns2np4)
• Tend to form 2 covalent bonds or -2 anions
• Almost all life is sustained by aerobic respiration (uses O2)
• O2 is used in combustion reactions (fire/rust)
• O forms many important compounds (oxides)
(CO2, NO3, PO4, SO4)
• Sulfur: pure form has distinct
smell of rotten eggs, found in 2
amino acids
Periodic Videos:
Barking Dog
www.youtube.com/watc
h?v=c3fJRRCAIdk
Hg toxicity is due to
binding a Se-Enzyme
Properties of Oxides Across a Period
Oxygen can form
compounds with elements of
various groups
basic
acidic
Group 17/7A Elements (ns2np5): Halogens
Only group
where all 3
phases of
matter can be
found
naturally.
The Royal Institute:
NI3 Contact Explosive
www.youtube.com/wa
tch?v=H7oZafSywow
Gas
Liquid
Solid
•
•
•
•
•
Halogens
Pure forms are diatomic (ex. F2, Cl2)
Tend to form 1 covalent bonds or -1 anions
Form salts when they react with metals
Large electronegativities; Highest e- affinity
Very reactive
• Bleach/Pools contain chlorine compounds (NaClO)
• Fluoride: toothpaste
• Iodine: disinfectant; needed
by thyroid glands
Periodic Videos: Chlorine
www.youtube.com/watch?v=BXCfBl4rmh0
Increasing reactivity
Group 17/7A Elements
2
5
(ns np ):
Noble Gases: Group 18/8A Elements
2
6
(ns np )
Completely filled valence orbitals.
Inert: Highest ionization energy/low e- affinities
Low tendency to lose/accept electrons.
Colorless, odorless, and tasteless gases
Low boiling / freezing points
e.g. He(l) -452 °F
Rare Compounds of the Noble Gases
PtF6
gas
A number of xenon compounds exist: XeF4, XeO3, XeO4.
A few krypton compounds have been prepared, such as KrF2.
Transition Metals
Found to be “less periodic”
– Difficult to purify and thus harder identify
– Did not fit into major groups, overall similar properties
– Contain the Coinage and Precious metals (Au, Ag, Pt)
Nature: future of nano-gold
www.youtube.com/watch?v=QorK2X7GsVU
Necessary in trace amounts in living
organisms
Zinc in DNA
unwinding proteins
Diethyl Zn combusts in air
Cobalt ion in
Vitamin B12
Fe binds O2 in Hemoglobin
Inner Transition Metals
Also called the Lanthanide and Actinide Series
• Paramagnetic
Neodymium
• Actinides are radioactive and
most are synthetically made
Nd
U
Uranium:
U-235 used in
nuclear reactors
Nd2Fe14B alloy
Sample of Things to Study
• Johann Dobereiner
• Triads
• Periodicity
• John Newlands
• Representative elements
• Inert
• Metal
• Lustrous
• Thermal Conductor
• Electrical Conductor
• Malleable
• Ductile
•Allotrope
• Non-metal
• Metalloids
• Radioactive
• Trans-Uranium
• Radius trends and cause
• Ion radius changes and cause
• Effective nuclear charge and cause
• Ionization energy trends and cause
• Electron Affinity trends and cause
• Electronegativity trends and cause
Reactions: What’s in your iPhone
www.youtube.com/watch?v=66SGcBAs04w