Folie 1 - PULSION Medical Systems SE: Startseite

Download Report

Transcript Folie 1 - PULSION Medical Systems SE: Startseite

Haemodynamic Monitoring
Theory and Practice
Haemodynamic Monitoring
2
A.
Physiological Background
B.
Monitoring
C.
Optimising the Cardiac Output
D.
Measuring Preload
E.
Introduction to PiCCO Technology
F.
Practical Approach
G.
Fields of Application
H.
Limitations
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
1.
Principles of function
2.
Thermodilution
3.
Pulse contour analysis
4.
Contractility parameters
5.
Afterload parameters
6.
Extravascular lung water
7.
Pulmonary permeability
Introduction to the PiCCO-Technology
Parameters for guiding volume therapy
Volumetric preload
Contractility
- static
- dynamic
Differentiated Volume Management
CO
EVLW
PiCCO Technology
Introduction to the PiCCO-Technology – Function
Principles of Measurement
PiCCO Technology is a combination of transpulmonary thermodilution and pulse contour analysis
CVC
Lungs
Pulmonary Circulation
central venous
bolus injection
Right Heart
PULSIOCATH
PULSIOCATH
Left Heart
Body Circulation
PULSIOCATH
arterial thermodilution
catheter
Introduction to the PiCCO-Technology – Function
Principles of Measurement
After central venous injection the cold bolus sequentially passes through the
various intrathoracic compartments
Bolus injection
EVLW
RA
RV
PBV
LA
LV
concentration changes
over time
EVLW
(Thermodilution curve)
Right heart
Lungs
Left heart
The temperature change over time is registered by a sensor at the tip of the arterial catheter
Introduction to the PiCCO-Technology – Function
Intrathoracic Compartments (mixing chambers)
Intrathoracic Thermal Volume (ITTV)
Pulmonary Thermal
Volume (PTV)
EVLW
RA
RV
PBV
EVLW
Largest single
mixing chamber
Total of mixing chambers
LA
LV
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
1.
Principles of function
2.
Thermodilution
3.
Pulse contour analysis
4.
Contractility parameters
5.
Afterload parameters
6.
Extravascular Lung Water
7.
Pulmonary Permeability
Introduction to the PiCCO-Technology – Thermodilution
Calculation of the Cardiac Output
The CO is calculated by analysis of the thermodilution curve using the modified
Stewart-Hamilton algorithm
Tb
Injection
t
COTD a
(Tb - Ti) x Vi x K
=
∫ D Tb x dt
Tb = Blood temperature
Ti = Injectate temperature
Vi = Injectate volume
∫ ∆ Tb . dt = Area under the thermodilution curve
K = Correction constant, made up of specific weight and specific heat of blood and injectate
Introduction to the PiCCO-Technology – Thermodilution
Thermodilution curves
The area under the thermodilution curve is inversely proportional to the CO.
Temperature
36,5
Normal CO: 5.5l/min
37
Temperature
Time
36,5
low CO: 1.9l/min
37
Temperature
Time
36,5
High CO: 19l/min
37
5
10
Time
Introduction to the PiCCO –Technology – Thermodilution
Transpulmonary vs. Pulmonary Artery Thermodilution
Transpulmonary TD (PiCCO)
Pulmonary Artery TD (PAC)
Aorta
Pulmonary
Circulation
PA
Lungs
central venous
bolus injection
LA
RA
Right Heart
Left heart
PULSIOCATH
arterial thermodilution catheter
RV
LV
Body Circulation
In both procedures only part of the injected indicator passes the thermistor.
Nonetheless the determination of CO is correct, as it is not the amount of the detected
indicator but the difference in temperature over time that is relevant!
Introduction to the PiCCO –Technology – Thermodilution
Validation of the Transpulmonary Thermodilution
Comparison with Pulmonary Artery Thermodilution
n (Pts / Measurements)
bias ±SD(l/min)
r
Friedman Z et al., Eur J Anaest, 2002
17/102
-0,04 ± 0,41
0,95
Della Rocca G et al., Eur J Anaest 14, 2002
60/180
0,13 ± 0,52
0,93
Holm C et al., Burns 27, 2001
23/218
0,32 ± 0,29
0.98
Bindels AJGH et al., Crit Care 4, 2000
45/283
0,49 ± 0,45
0,95
Sakka SG et al., Intensive Care Med 25, 1999
37/449
0,68 ± 0,62
0,97
Gödje O et al., Chest 113 (4), 1998
30/150
0,16 ± 0,31
0,96
9/27
0,19 ± 0,21
-/-
Pauli C. et al., Intensive Care Med 28, 2002
18/54
0,03 ± 0,17
0,98
Tibby S. et al., Intensive Care Med 23, 1997
24/120
0,03 ± 0,24
0,99
McLuckie A. et a., Acta Paediatr 85, 1996
Comparison with the Fick Method
Introduction to the PiCCO-Technology – Thermodilution
Extended analysis of the thermodilution curve
From the characteristics of the thermodilution curve it is possible to determine certain time
parameters
Tb
Injection
Recirculation
In Tb
e-1
MTt
DSt
MTt: Mean Transit time
the mean time required for the indicator to reach the detection point
DSt: Down Slope time
the exponential downslope time of the thermodilution curve
Tb = blood temperature; lnTb = logarithmic blood temperature; t = time
t
Introduction to the PiCCO-Technology – Thermodilution
Calculation of ITTV and PTV
By using the time parameters from the thermodilution curve and the CO ITTV and
PTV can be calculated
Tb
Injection
Recirculation
In Tb
e-1
MTt
DSt
t
Intrathoracic Thermal Volume
Pulmonary Thermal Volume
ITTV = MTt x CO
PTV = Dst x CO
Einführung in die PiCCO-Technologie – Thermodilution
Calculation of ITTV and PTV
Intrathoracic Thermal Volume (ITTV)
Pulmonary Thermal
Volume (PTV)
EVLW
RA
RV
PBV
EVLW
PTV = Dst x CO
ITTV = MTt x CO
LA
LV
Introduction to the PiCCO –Technology – Thermodilution
Volumetric preload parameters – GEDV
Global End-diastolic Volume (GEDV)
ITTV
PTV
EVLW
RA
RV
PBV
LA
LV
EVLW
GEDV
GEDV is the difference between intrathoracic and pulmonary thermal volumes
Introduction to the PiCCO –Technology – Thermodilution
Volumetric preload parameters – ITBV
Intrathoracic Blood Volume (ITBV)
GEDV
EVLW
RA
RV
PBV
PBV
LA
LV
EVLW
ITBV
ITBV is the total of the Global End-Diastolic Volume and the blood volume in
the pulmonary vessels (PBV)
Introduction to the PiCCO-Technology – Thermodilution
Volumetric preload parameters – ITBV
ITBV is calculated from the GEDV by the PiCCO Technology
Intrathoracic Blood Volume (ITBV)
ITBVTD (ml)
3000
2000
1000
0
ITBV = 1.25 * GEDV – 28.4 [ml]
0
1000
GEDV vs. ITBV in 57 Intensive Care Patients
Sakka et al, Intensive Care Med 26: 180-187, 2000
2000
3000 GEDV (ml)
Introduction to the PiCCO-Technology
Summary and Key Points - Thermodilution
• PiCCO Technology is a less invasive method for monitoring the
volume status and cardiovascular function.
• Transpulmonary thermodilution allows calculation of various volumetric parameters.
• The CO is calculated from the shape of the thermodilution curve.
• The volumetric parameters of cardiac preload can be calculated through advanced
analysis of the thermodilution curve.
• For the thermodilution measurement only a fraction of the total injected indicator
needs to pass the detection site, as it is only the change in temperature over time that
is relevant.
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
1.
Principles of function
2.
Thermodilution
3.
Pulse contour analysis
4.
Contractility parameters
5.
Afterload parameters
6.
Extravascular Lung Water
7.
Pulmonary Permeability
Introduction to the PiCCO-Technology – Pulse contour analysis
Calibration of the Pulse Contour Analysis
The pulse contour analysis is calibrated through the transpulmonary thermodilution
and is a beat to beat real time analysis of the arterial pressure curve
Transpulmonary Thermodilution
Pulse Contour Analysis
Injection
COTPD
HR
T = blood temperature
t = time
P = blood pressure
= SVTD
Introduction to the PiCCO-Technology – Pulse contour analysis
Parameters of Pulse Contour Analysis
Cardiac Output
dP
 P(t)
PCCO = cal • HR • (
+ C(p) •
) dt
 SVR
dt
Systole
Patient- specific calibration
factor (determined by thermodilution)
Heart rate
Area under the
pressure curve
Aortic compliance
Shape of the pressure
curve
Introduction to the PiCCO-Technology – Pulse contour analysis
Validation of Pulse Contour Analysis
Comparison with pulmonary artery thermodilution
n (Pts / Measurements)
bias ±SD (l/min)
r
Mielck et al., J Cardiothorac Vasc Anesth 17 (2), 2003
22 / 96
-0,40 ± 1,3
-/-
Rauch H et al., Acta Anaesth Scand 46, 2002
25 / 380
0,14 ± 0,58
-/-
Felbinger TW et al., J Clin Anesth 46, 2002
20 / 360
-0,14 ± 0,33
0,93
Della Rocca G et al., Br J Anaesth 88 (3), 2002
62 / 186
-0,02 ± 0,74
0,94
Gödje O et al., Crit Care Med 30 (1), 2002
24 / 517
-0,2 ± 1,15
0,88
Zöllner C et al., J Cardiothorac Vasc Anesth 14 (2), 2000
19 / 76
0,31 ± 1,25
0,88
Buhre W et al., J Cardiothorac Vasc Anesth 13 (4), 1999
12 / 36
0,03 ± 0,63
0,94
Introduction to the PiCCO-Technology – Pulse Contour Analysis
Parameters of Pulse Contour Analysis
Dynamic parameters of volume responsiveness – Stroke Volume Variation
SVmax
SVmin
SVmean
SVV =
SVmax – SVmin
SVmean
The Stroke Volume Variation is the variation in stroke volume over the ventilatory cycle,
over the previous 30 second period.
measur
Introduction to the PiCCO-Technology – Pulse Contour Analysis
Parameters of Pulse Contour Analysis
Dynamic parameters of volume responsiveness – Pulse Pressure Variation
PPmax
PPmin
PPmean
PPV =
PPmax – PPmin
PPmean
The pulse pressure variation is the variation in pulse pressure over the ventilatory cycle,
measured over the previous 30 second period.
Introduction to the PiCCO-Technology – Pulse contour analysis
Summary pulse contour analysis - CO and volume responsiveness
• The PiCCO technology pulse contour analysis is calibrated by transpulmonary
thermodilution
• PiCCO technology analyses the arterial pressure curve beat by beat
thereby providing real time parameters
• Besides cardiac output, the dynamic parameters of volume responsiveness
SVV (stroke volume variation) and PPV (pulse pressure variation) are determined
continuously
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
1.
Principles of function
2.
Thermodilution
3.
Pulse contour analysis
4.
Contractility parameters
5.
Afterload parameters
6.
Extravascular Lung Water
7.
Pulmonary Permeability
Introduction to the PiCCO-Technology – Contractility parameters
Contractility
Contractility is a measure for the performance of the heart muscle
Contractility parameters of PiCCO technology:
- dPmx (maximum rate of the increase in pressure)
- GEF (Global Ejection Fraction)
- CFI (Cardiac Function Index)
kg
Introduction to the PiCCO-Technology – Contractility parameters
Contractility parameter from the pulse contour analysis
dPmx = maximum velocity of pressure increase
The contractility parameter dPmx represents the maximum velocity of left
ventricular pressure increase.
Introduction to the PiCCO-Technology – Contractility parameters
Contractility parameter from the pulse contour analysis
dPmx = maximum velocity of pressure increase
n = 220
y = -120 + (0,8* x)
r = 0,82
p < 0,001
femoral dP/max 2000
[mmHg/s]
1500
1000
500
0
0
500
1000
1500
2000
LV dP/dtmax
[mmHg/s]
de Hert et al., JCardioThor&VascAnes 2006
dPmx was shown to correlate well with direct measurement of velocity of left
ventricular pressure increase in 70 cardiac surgery patients
Introduction to the PiCCO-Technology – Contractility parameters
Contractility parameters from the thermodilution measurement
GEF = Global Ejection Fraction
LA
RA
LV
GEF =
4 x SV
GEDV
RV
• is calculated as 4 times the stroke volume divided by the global end-diastolic
volume
• reflects both left and right ventricular contractility
Introduction to the PiCCO-Technology – Contractility parameters
Contractility parameters from the thermodilution measurement
GEF = Global Ejection Fraction
sensitivity
1
15
18
0,8
8
12
16
19
10
5
0,6
20
0,4
-20
22
-10
10
20
D FAC, %
-5
0,2
-10
0
0
0,2
0,4
0,6
0,8
1 specifity
-15
r=076, p<0,0001
n=47
D GEF, %
Combes et al, Intensive Care Med 30, 2004
Comparison of the GEF with the gold standard TEE measured contractility in
patients without right heart failure
Introduction to the PiCCO-Technology – Contractility parameters
Contractility parameters from the thermodilution measurement
CFI = Cardiac Function Index
CFI =
CI
GEDVI
• is the CI divided by global end-diastolic volume index
• is - similar to the GEF – a parameter of both left and right ventricular
contractility
Introduction to the PiCCO-Technology – Contractility parameters
Contractility parameters from the thermodilution measurement
CFI = Cardiac Function Index
sensitivity
1
3
4
15
2
3,5
10
0,8
5
0,6
5
-20
0,4
-10
10
20
D FAC, %
-5
6
0,2
-10
0
0
0,2
0,4
0,6
0,8
1 specificity
-15
r=079, p<0,0001
n=47
D GEF, %
Combes et al, Intensive Care Med 30, 2004
CFI was compared to the gold standard TEE measured contractility in patients
without right heart failure
Haemodynamic Monitoring
E. Introduction to PiCCO technology
1.
Functions
2.
Thermodilution
3.
Pulse contour analysis
4.
Contractility parameters
5.
Afterload parameters
6.
Extravascular Lung Water
7.
Pulmonary Permeability
Introduction to the PiCCO –Technology – Afterload parameter
Afterload parameter
SVR = Systemic Vascular Resistance
SVR =
(MAP – CVP) x 80
CO
• is calculated as the difference between MAP and CVP divided by CO
• as an afterload parameter it represents a further determinant of the
cardiovascular situation
• is an important parameter for controlling volume and catecholamine therapies
MAP = Mean Arterial Pressure
CVP = Central Venous Pressure
CO = Cardiac Output
80 = Factor for correction of units
Introduction to the PiCCO –Technology – Contractility and Afterload
Summary and Key Points
• The parameter dPmx from the pulse contour analysis as a measure of the left
ventricular myocardial contractility gives important information regarding
cardiac function and therapy guidance
• The contractility parameters GEF and CFI are important parameters for
assessing the global systolic function and supporting the early diagnosis of
myocardial insufficiency
• The Systemic Vascular Resistance SVR calculated from blood pressure and
cardiac output is a further parameter of the cardiovascular situation, and gives
additional information for controlling volume and catecholamine therapies
Haemodynamic Monitoring
E. Introduction to PiCCO technology
1.
Principles of function
2.
Thermodilution
3.
Pulse contour analysis
4.
Contractility parameters
5.
Afterload parameters
6.
Extravascular Lung Water
7.
Pulmonary Permeability
Introduction to the PiCCO –Technology – Extravascular Lung Water
Calculation of Extravascular Lung Water (EVLW)
ITTV
– ITBV
= EVLW
The Extravascular Lung Water is the difference between the intrathoracic thermal volume and
the intrathoracic blood volume. It represents the amount of water in the lungs outside the blood
vessels.
Introduction to the PiCCO –Technology – Extravascular Lung Water
Validation of Extravascular Lung Water
EVLW from the PiCCO technology has been shown to have a good correlation with
the measurement of extravascular lung water via the gravimetry and dye dilution
reference methods
Gravimetry
Dye dilution
ELWI by PiCCO
ELWIST (ml/kg)
Y = 1.03x + 2.49
40
25
n = 209
r = 0.96
20
30
15
20
10
10
0
R = 0,97
P < 0,001
0
10
20
30
ELWI by gravimetry
Katzenelson et al,Crit Care Med 32 (7), 2004
5
0
0
5
10
15
20
25
ELWITD (ml/kg)
Sakka et al, Intensive Care Med 26: 180-187, 2000
Introduction to the PiCCO –Technology – Extravascular Lung Water
EVLW as a quantifier of lung edema
High extravascular lung water is not reliably identified by blood gas analysis
ELWI (ml/kg)
30
20
10
0
0
50
150
250
350
450
PaO2 /FiO2
Boeck J, J Surg Res 1990; 254-265
550
Introduction to the PiCCO –Technology – Extravascular Lung Water
EVLW as a quantifier of lung oedema
ELWI = 19 ml/kg
ELWI = 14 ml/kg
Extravascular lung
water index
(ELWI)
normal range:
3 – 7 ml/kg
ELWI = 7 ml/kg
ELWI = 8 ml/kg
Introduction to the PiCCO –Technology – Extravascular Lung Water
EVLW as a quantifier of lung oedema
Chest x ray – does not reliably quantify pulmonary oedema and is difficult to judge,
particularly in critically ill patients
D radiographic score
r = 0.1
p > 0.05
80
60
40
20
0
-15
-10
10
-20
-40
-60
-80
Halperin et al, 1985, Chest 88: 649
15
D ELWI
Introduction to the PiCCO –Technology – Extravascular Lung Water
Relevance of EVLW Assessment
The amount of extravascular lung water is a predictor for mortality in the intensive
care patient
Mortality (%)
Mortality(%
)
100
n = 81
90
80
70
70
60
60
50
n = 373
40
50
30
40
20
30
20
*p = 0.002
80
10
0
4 - 6 6 - 8 8 - 10 10 - 12 - 16 16 - > 20
12
20
ELWI (ml/kg)
Sturm J in: Lewis, Pfeiffer (eds): Practical Applications of Fiberoptics in
Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork
1990, pp 129-139
0
0
<7
n = 45
7 - 14
n = 174
Sakka et al , Chest 2002
14 - 21
n = 100
> 21
n = 54
ELWI (ml/kg)
Introduction to the PiCCO –Technology – Extravascular Lung Water
Relevance of EVLW Assessment
Volume management guided by EVLW can significantly reduce time on ventilation and
ICU length of stay in critically ill patients, when compared to PCWP oriented therapy,
Ventilation Days
* p ≤ 0,05
n = 101
Intensive Care
days
* p ≤ 0,05
22 days
9 days
15 days
7 days
PAC Group
EVLW Group
PAC Group
EVLW Group
Mitchell et al, Am Rev Resp Dis 145: 990-998, 1992
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
1.
Principles of function
2.
Thermodilution
3.
Pulse contour analysis
4.
Contractility parameters
5.
Afterload parameters
6.
Extravascular Lung Water
7.
Pulmonary Permeability
Introduction to PiCCO Technology – Pulmonary Permeability
Differentiating Lung Oedema
PVPI = Pulmonary Vascular Permeability Index
PVPI =
EVLW
EVLW
PBV
PBV
• is the ratio of Extravascular Lung Water to Pulmonary Blood Volume
• is a measure of the permeability of the lung vessels and as such can
classify the type of lung oedema (hydrostatic vs. permeability caused)
Introduction to PiCCO Technology – Pulmonary Permeability
Classification of Lung Oedema with the PVPI
Difference between the PVPI with hydrostatic and permeability lung oedema:
Lung oedema
hydrostatic
permeability
PBV
PBV
EVLW
EVLW
EVLW
EVLW
PBV
PBV
PVPI normal (1-3)
PVPI raised (>3)
Introduction to PiCCO Technology – Pulmonary Permeability
Validation of the PVPI
PVPI can differentiate between a pneumonia caused and a cardiac failure caused
lung oedema.
PVPI
4
3
2
Cardiac insufficiency
Pneumonia
16 patients with congestive heart failure and acquired pneumonia. In both
groups EVLW was 16 ml/kg.
Benedikz et al ESICM 2003, Abstract 60
Introduction to PiCCO Technology – Pulmonary Permeability
Clinical Relevance of the Pulmonary Vascular Permeability Index
EVLWI answers the question:
How much water is in the lungs?
PVPI answers the question:
Why is it there?
and can therefore give valuable aid for therapy guidance!
Introduction to PiCCO Technology – EVLW and Pulmonary Permeability
Summary and Key Points
• EVLW as a valid measure for the extravascular water content of the lungs is
the only parameter for quantifying lung oedema available at the bedside.
• Blood gas analysis and chest x-ray do not reliably detect and measure lung
edema
• EVLW is a predictor for mortality in intensive care patients
• The Pulmonary Vascular Permeability Index can differentiate between
hydrostatic and a permeability caused lung oedema