A noiseless 512 x 512 detector for AO with kHz frame rates

Download Report

Transcript A noiseless 512 x 512 detector for AO with kHz frame rates

Mid-IR photon counting array using
HgCdTe APDs and the Medipix2 ROIC
John Vallerga and Jason McPhate
Space Sciences Laboratory
University of California, Berkeley
Larry Dawson and Maryn Stapelbroek
DRS Sensors & Targeting Systems, Cypress CA
Photon counting
Count
(x,y,t)
Events
Threshold
Charge integrating
Q
V  sv
ADC
Events
 sEvents
Motivation for photon counting
Reduction of readout noise in infrared
imaging
Advantageous in applications where imaging is
not background dominated:
High frame rate (adaptive optics, interferometry)
Short integration times (Lidar etc.)
Low background (spectrophotometry, space based)
SPIE 2007 San Diego
Signal in presence of noise
1000 photons
100 photons
10 photons
8x8
Noiseless
35% QE
8x8 2.5 e- rms
90% QE
6x6 2.5 e- rms
90% QE
4x4 2.5 e- rms
90% QE
Imaging IR photon counting detector concept

Use an IR sensitive absorber with gain
– HgCdTe APDs
– Large arrays

Count events at the pixel level
– “Medipix2” CMOS ASIC
– 55m pixels, 256x256 format

Readout binary data at 100MHz fast (~1
kHz framerate)
SPIE 2007 San Diego
Avalanche Photodiodes (APDs)

Geiger mode
–
–
–
–

Biased above breakdown
High, saturated gain - easy to count
Long recovery time per event
Afterpulsing and higher background
Linear mode
– Biased near breakdown
– Lower gain -harder to count
– Distribution of pulse sizes - “excess noise”
SPIE 2007 San Diego
High Density Vertically Integrated Photodiode (HDVIP)
DRS Infrared Technologies
SPIE 2007 San Diego
HDVIP IR APDs from DRS

HgCd1-xTex with adjustable c

Electron induced avalanche

Ion-milled via allows backside readout

Linear gains as high as 1000 (c < 4.3m)

Excess noise ~ 1 !

Arrays have been fabricated (128x128)
SPIE 2007 San Diego
Gain vs. bias voltage
 = 4.3 m, 77K, 53 of 54 in array
SPIE 2007 San Diego
Excess noise factor



k=0, only electrons involved in amplification
Excess noise factor of 1.0 implies a deterministic
amplification process
Low noise factor allows a higher threshold in pulse sensing
electronics
SPIE 2007 San Diego
Medipix2 ROIC




Each pixel has amp, discriminator, gate & counter.
256 x 256 with 55 µm pixels (buttable to 512 x 512).
Counts integrated at pixel. No charge transfer!Previous Pixel
Amplifier noise 110 e- rms
Shut ter
Mask bit
Lower Thresh.
Polarity
Mux.
Clock out
Disc.
Disc.
logic
Input
Preamp
Disc.
Mux.
13 bit
counter –
Shift
Register
Upper Thresh.
Mask bit
Next Pixel
~ 500 transistors/pixel
Analog
SPIE 2007 San Diego
Digital
Medipix readout of semiconductor
arrays
Developed at CERN for
Medipix collaboration (xray)
radiography
tomography
mammography
neutron detection
gamma imaging
MCP readout
gaseous detectors
electron microscope
SPIE 2007 San Diego
Medipix2 readout architecture
• Pixel values are digital (14 bit)
3584 bit Pixel Column 255
3584 bit Pixel Column 1
3584 bit Pixel Column 0
• Bits are shifted into fast shift
register
256 bit fast shift register
32 bit CMOS output
SPIE 2007 San Diego
LVDS out
• Choice of serial or 32 bit parallel
output
• Maximum designed bandwidth is
100MHz
• Corresponds to 284µs frame
readout
HDVIP - Medipix2 Hybrid
Characteristics well matched:
HDVIP
64 m pixel (8x8)
Gain up to 1000
Backside output
Low dark current
Medipix2
55 mm pixel
Minimum threshold 900eFrontside input
10nA/pxl compensation
However
77K operation
IR sensitive
SPIE 2007 San Diego
Room temp. design
Very active chip
Test Setup

Simple test - drop Medipix2
chip into LN2
– Mounted on ceramic header
used for 350C tests
– Attached to brass heat sink
and copper cold finger
– Accurate diode thermometer
glued to header
SPIE 2007 San Diego
Ceramic Header & Thermal Testing
SPIE 2007 San Diego
Test thermal profile
LN2 Thermal test of MXR2 E07 on ceramic header
300
250
Temp [K]
200
150
100
50
0
15:00
16:00
17:00
Time
SPIE 2007 San Diego
18:00
Individual DACs vs. Temp.
PREAMP
IKRUM
1.4
2
1 .8
1.2
1 .6
1
1 .4
1
299K
170K
123K
101K
77K
0 .8
0 .6
0 .4
Volts
Volts
1 .2
299K
170K
123K
101K
77K
0.6
0.4
0.2
0 .2
0
1
0.8
0
1 4 2 7 4 0 5 3 6 6 7 9 9 2 1 0 51 1 81 3 11 4 41 5 71 7 01 8 31 9 62 0 92 2 22 3 52 4 8
1
13
25
37
49
61
73
85
DA C Value
97 109 121 133 145 157 169 181 193 205 217 229 241 253
DAC Value
DISC
THS
1.4
2
1.8
1.2
1.6
1.4
1.2
0.8
299K
170K
123K
101K
77K
0.6
0.4
0.2
Volts
Volts
1
1
299K
170K
123K
101K
77K
0.8
0.6
0.4
0.2
0
1
13
25
37
49
61
73
85
97 109 121 133 145 157 169 181 193 205 217 229 241 253
DAC Value
SPIE 2007 San Diego
0
1
13
25
37
49
61
73
85
97 109 121 133 145 157 169 181 193 205 217 229 241 253
DAC Value
Threshold Variation (noise)
299K
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
100
SPIE 2007 San Diego
150
200
250
300
350
400
Threshold Variation (noise)
98K
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
0
100
SPIE 2007 San Diego
150
200
250
300
350
400
Threshold Variation (noise)
77k-Reoptimized
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0
100
SPIE 2007 San Diego
150
200
250
300
350
400
Feasibility Test at DRS

Used existing 8x8 APD array mounted on fan-out
header

Wirebonded 8 APD outputs to 8 Medipix2 input pads

Hybrid assembly mounted on larger header

Large header mounted in test dewar
– Expect higher amplifier noise due to increased capacitance
– Use IR photodiode as photon light source to input light pulses
– Use photon-transfer curve to characterize gain and noise
SPIE 2007 San Diego
Medipix2 and APD array
Medipix2
APD array
SPIE 2007 San Diego
Wirebonds
Test Hybrid in dewar
SPIE 2007 San Diego
IR photodiode to illuminate APD
SPIE 2007 San Diego
Future work

Start/continue feasibility tests
– Quantify noise, gain and threshold sensitivity

Extrapolate results to realistic APD mounting
Investigate APD fabrication techniques onto
Medipix wafer
Model/simulate APD pixel to match Medipix

Seek funding to pursue full chip fabrication


SPIE 2007 San Diego
Summary
If successful, this effort could lead to a
sensor with:
–
–
–
–
–
HgCdTe QE (c < 4.3 m)
Large arrays (512 x n*256)
Zero readout noise
kHz frame rates or higher
Electronic shutter
Which should prove very useful for many niche
applications with low background in the IR
SPIE 2007 San Diego