LIP´s of the World

Download Report

Transcript LIP´s of the World

Large Igneous Provinces
Die großen magmatischen
Provinzen der Erde
LIP
Siberian traps
LIP´s of the World
250 Ma (Late Permian)
Viluy traps
360 Ma (Late Devonian)
Emeishan traps
258 Ma (Late Permian)
Columbia River Basalt
16 Ma (Early Miocene)
Deccan traps
65 Ma (Late Cretaceous)
Ethiopian and Yemen traps, 30 Ma (Oligocene)
Madagascar traps, ~ 90 Ma (Mid Cretaceous)
Karoo and Ferrar traps, 184 Ma (Mid Jurassic)
Parana and Etendeka traps, 132 Ma (Early Cretaceous)
Continental Flood Basalts
Trap
North Atlantic Tertiary Volcanic Province, 55 & 60 Ma (Paleocene)
LIP
Large Igneous Provinces
Ontong–Java plateau
117, 98, 93 Ma (Mid-Late Cretaceous
Ozeanische Plateaus
Large Igneous Provinces
LIP
Spuren von heißen Flecken
Crough 1983
Hot Spot Track – der Hawaii – Emperor - Seamount Kette
81 Ma
heute
aktiv
Hawaii
Spur wird
kontinuierlich jünger
in Richtung Hawaii
Karte der magnetischen Anomalien
Spur ist unabhängig von der Bewegung der Lithosphärenplatten –
kreuzt die magnetischen Anomalien der ozeanischen Kruste
Columbia River Basalt
16 Ma (Early Miocene)
& Yellowstone Hot Spot
Fig. 1. Map showing the distribution of the
Colombia River basalts (CRBs) and track of the
Yellowstone hot spot.
According to Pierce and Morgan [14], activity of
the CRBs started due to the arrival of gigantic
plume head of the Yellowstone hot spot ca. 16 Ma
ago. The plume hit the boundary between Oregon,
Idaho and Nevada where rhyolite volcanism
occurred due to crustal anatexsis. Much of the
basalt magmas, however, traveled to the north
through 1000 km long NS rift system and drained
at the boundary between Washington and Oregon
States. Simplified after fig. 1 of Pierce and Morgan
[14].
Scoring hotspots: the Plume
and Plate paradigms
Don L. Anderson
Seismological Laboratory,
Caltech, Pasadena, California
91125,USA
dla@gps. caltech. edu
Klassisches Modell:
Mantelkonvektion betrifft den gesamten Mantel
Alternative: zwei unabhängige Konvektionssysteme
im unteren und oberen Mantel
Tomographisches Modell des Erdmantels
1350 km Tiefe
p-Wellen
s-Wellen
van der Hilst et al. 1997
Miner Petrol
DOI 10.1007/s00710-009-0068-z
Structure, mineralogy and dynamics of the lowermost mantle
Reidar G. Trønnes
Beispiel für Konvektionsmodell im Oberen Mantel
Cartoon illustrating the architecture of the subduction zones and
the related pattern of mantle convection in the Mediterranean region.
C Faccenna & TW Becker Nature 465, 602-605 (2010) doi:10.1038/nature09064
Noch eine Alternative
Holden & Vogt 1977
Ein streng mechanistischer Ansatz für Plattentektonik
Holden & Vogt 1977