Transcript v A v A

Stellar Radii - parts of Chapters 7.3, 6.1
The Sun - resolved as a disk of diameter 0.53
Calculation of the Sun’s radius
Earth

d
Sun
D
(rad) = d/D = d/1AU = 0.53(2/360) = 0.0093, hence d = 0.0093AU
= 0.0093 x 1.496 x 108 km = 1.392 x 106 km or Rsun = 6.96 x 105 km
Can we apply same principles to the stars?
e.g.  Cen (like Sun) D = 1.3 pc = 2.7 x 105 AU; if Rcen = Rsun
 = 2Rsun/D = 0.0093 AU/2.7 x 105 AU = 3.3 x 10-8 rad = 0.007 arcsec
(angular diameter of a dime 150 km away!)
Can we resolve this small angle with a telescope?
Stellar radii
First Minimum
Airy disk - diffraction pattern produced by a circular
aperture (telescope mirror).
First minimum usually taken as resolution limit of telescope
Angular distance from centre to first ring  = 1.22 /D
 is wavelength of observation, D diameter of telescope,  in
radians (see figs 6.8 - 6.10)
Usually say 2 objects resolved if angular separation > /D
Resolved
Unresolved
min
Stellar Radii
Example: resolution of human eye
Pupil aperture = 1 cm;
visible light  = 500 nm = 5 x 10-5 cm (same units)
diffraction = /d = 5 x 10-5 cm / 1 cm
= 5 x 10-5 rad = 0.003 = 10 arcsec
If aperture > 10 cm, then diffraction = 1 arcsec
This is about the limit imposed by the atmosphere
To resolve  Cen:
 = 0.007 arcsec = 3.3 x 10-8 rad
 > min = 1.22/D  D > 1.22/
In visible light,  = 500 nm = 5 x 10-7 m
Therefore need D > 1.22 (5 x 10-7 m)/(3.3 x 10-8) = 18.6 m
Compare with world’s largest telescope, Keck = 10 m
Ways to Measure Stellar Radii
44
22
LL TT RR 
LLT
  
T 4R
4R 

LL TTRR
44
Method 1: Using Blackbody
Laws:
Lum. (L) = flux (F - for a BB) x
surface area (A - spherical
star radius R)
L = T4 x 4R2
L is known if distance is
known, T is obtained from
spectrum or colour, solve for
radius R
+1/2 not -1/2
Examples:
There is a tremendous range of
stellar radii spanning 7-8 orders
of magnitude.
22
11
2
2
RR LL 22TT 

  

RR LLTT
4.8 TTeffeff5800K
5800K
MMVV4.8
Betelgeuse
Betelgeuse: : M
MVV5.5
5.5 TTeffeff3500K
3500K
LLBetel


Betel

M
2.5
log


2.5
log
M

2.5
log
MMVVBetel






VV 
Betel
LL
L 

Betel


LLBetel
Betel
5.5
2.5
log
5.5  4.8
4.8 1.5
1.5
log
log
 
LL
L
Betel
LLBetel
Betel13,200
13,200
LL
2
2
3500K
RRBetel
3500K
1 1

13,200
 Betel
320
 320

13,200 2 2
5800K
RR
5800K
Sirius
Sirius BB: :
LL
0.03
0.03 TTeffeff27,000K
27,000K
LL 
faint companion
companion to
to Sirius
Sirius AA
faint
2
2
1 1
27,000K
RRSirius
27,000K
Sirius BB
22
0.03
0.03 
0.008
  0.008
5800K
RR
5800K  approx
approx. . size
size
ofof Earth
Earth
Ways to Measure Stellar Radii
Method 2: Using Eclipsing Binaries:
Explanation
If orbital inclination i ~ 90, orbital plane is
close to line of sight and stars will partially
or totally eclipse each other. Duration of
eclipses, combined with orbital speeds,
gives stellar radii.
To Sun
vA
Orbit seen
from above
vB
v = vA + v B
vA
dA
Light curve of eclipsing binary YY sagittarii
Light
from
both
stars
visible
V~10.7
b 
m 1  m 2  2.5 log 2 
b1 
0.7
dB
1
2
3
1 2
2
P=2.628 d
Primary… Secondary minimum
4
3 4
brightness
apparent
brightness
halved
V~10.0
If we could
see stellar
disks during
eclipse
vB
v
Light curve
v x t B = dB
tB
tA
time
v x tA = dA
Ways to Measure Stellar Radii
Method 3: Using Eclipsing Binaries:
A Real Example
Period
Eclipsing double-line
spectroscopic binary AR Lacertae
P
~2d
Radial Velcoty (km sec-1)
vB~118 km/s
vB
vA
Difference of magnitude ∆m
Light
Curve
v = vA + vB ~ 230 km/s
tA = t3 - t1 ~ 0.24 d
tB = t2 - t1 ~ 0.13 d
dA = v x tA ~ 4.8 x 106 km
RA ~ 3.4 R
Radial
Velocity
Curve
vA~112 km/s
t1
Time (days)
t2
t3
dB = v x tB ~ 2.6 x 106 km
RB ~ 1.9 R 
State of Stellar Matter
With masses and radii known, the densities and state of matter of stars can be
determined.
Sun:
Msun = 2 x 1030 kg = 2 x 1033 g
Rsun = 7 x 105 km = 7 x 1010 cm
Mean density sun = Msun/(4/3Rsun3) = 1.4 g/cm3 (a bit more than  water)
Giant Stars:
Mstar ~ few x Msun in some cases
Rstar ~ 500 Rsun
giant typically < 10-7 g/cm3!
3000K < Teff < 50,000 K  stars are gaseous