Transcript Document

MIT Jamboree 2007
Talk Outline
• Background
• System design
• Novel reporter system
• Established modelling techniques
• Cutting-edge modelling
MIT Jamboree 2007
The Problem
Phenolic compounds
Polycyclic aromatic
hydrocarbons (PAH)
BTEX compounds
MIT Jamboree 2007
Objectives
• 1: Design modular sensor construct
• 2: Create the construct
• 3: Test the system
• 4: Development into a machine
• 5: Model and predict outcomes!
MIT Jamboree 2007
Why a Biosensor?
• Lab-based monitoring
• Skilled workforce
• Expensive!
MIT Jamboree 2007
What is a Biosensor?
• Biosensors include a transcriptional activator
coupled to a reporter
toluene
luciferin
XylR
operator / promoter
luminescence
luciferase
Luciferase
reporter gene()
gene
MIT Jamboree 2007
Our Construct Design
Constitutive
promoter
Transcriptional
activator
RBS
RBS
Responsive
promoter BBa_J61101
Reporter
gene
MIT Jamboree 2007
Double
terminator
BBa_B0015
Double
terminator
BBa_B0015
Objectives
• 1: Design modular sensor construct
– Switch on reporter in presence of pollutants
• 2: Create the construct
• 3: Test the system
• 4: Development into a machine
• 5: Model and predict outcomes!
MIT Jamboree 2007
Our Solution
Phenolic compounds
DmpR - phenols
Polycyclic aromatic hydrocarbons (PAH)
DntR - PAHs
BTEX compounds
XylR - toluene
MIT Jamboree 2007
Our Construct Design
Transcriptional
activator
Constitutive
promoter
DmpR - phenols
RBS
DntR - PAHs
XylR - toluene
Reporter
gene
RBS
Responsive
promoter BBa_J61101
LacZ
GFP
Luciferase
MIT Jamboree 2007
Double
terminator
BBa_B0015
Double
terminator
BBa_B0015
Objectives
• 1: Design modular sensor construct
– Switch on reporter in presence of pollutants
• 2: Create the construct
– Use 3 different sensors to express luciferase or LacZ
• 3: Test the system
• 4: Development into a machine
• 5: Model and predict outcomes!
MIT Jamboree 2007
Testing The System
DntR - inducible LacZ
[PAH metabolite] (M)
MIT Jamboree 2007
XylR - inducible luciferase
Objectives
• 1: Design sensor/reporter construct
– Switch on reporter in presence of pollutants
• 2: Create the construct
– Use 3 different sensors to express luciferase or LacZ
• 3: Test the system
– PAH-metabolite and xylene sensors successful
• 4: Development into a machine
• 5: Model and predict outcomes!
MIT Jamboree 2007
Unique Reporter System
• Conventional biosensors use
conventional reporter genes
– e.g. LacZ, GFP, luciferase…
• Lengthy and expensive procedures
• Need a novel idea!
MIT Jamboree 2007
Microbial Fuel Cells
• Clean, renewable
& autonomous
• Electrons from metabolism
harvested at anode
• Versatile, long-lasting, varied carbon sources
• Advantage over conventional power sources
MIT Jamboree 2007
Microbial Fuel Cells
MIT Jamboree 2007
Pyocyanin
• From pathogenic Pseudomonas aeruginosa
MIT Jamboree 2007
Pyocyanin
• Phz genes – 7 gene operon,
pseudomonad specific
• PhzM and PhzS – P. aeruginosa
specific
MIT Jamboree 2007
Our Constructs
Constitutive
promoter
Target
RBS
promoter
Inducible
transcription
factor
RBS
PhzM
coding
region
RBS
MIT Jamboree 2007
PhzS
coding
region
Double
terminator
Double
terminator
-
+
Pollutant
Electrical Output
Microbial Fuel Cell
Pr
RBS
xylR
Term.
Term.
Pu
RBS
phz genes
Term.
Term.
PYOCYANIN
MIT Jamboree 2007
Objectives
• 1: Design sensor/reporter construct
– Switch on reporter in presence of pollutants
• 2: Create the construct
– Use 3 different sensors to express luciferase or LacZ
• 3: Test the system
– PAH-metabolite and xylene sensors successful
• 4: Development into a machine
– Use Pseudomonas aeruginosa to power a fuel cell
which generates a remote signal sent to base station
• 5: Model and predict outcomes!
MIT Jamboree 2007
Wetlab - Drylab
MIT Jamboree 2007
Computational Modelling of the
Biosensor
 Aims
• Guide biologists for the better design of
synthetic networks
• Use different computational approaches
to model and analyze the systems
o Simple biosensor
o Positive feedback within the biosensor
• Test and Validate the hypothesis proposed
by the biologists
MIT Jamboree 2007
The Model
tf
• Merge transcription and translation
• Merge phzM with phzS (Parsons 2007)
mRNA TF
TF + S
TF|S
TF|S
phzS
phzM
TF: Dntr or Xylr
S: signal
mRNA PhzM
mRNA PhzS
PhzM
PhzS
TF|S: complex
PCA
Intermediate
compound
MIT Jamboree 2007
PYO
24
The Model
• Merge transcription and translation
• Merge phzM with phzS (Parsons 2007)
tf
TF + S
TF|S
TF|S
TF: Dntr or Xylr
phzMS
S: signal
PhzMS
TF|S: complex
PCA
MIT Jamboree 2007
PYO
PYO
2
Feedback Loop
tf
TF + S
TF|S
TF|S
TF: Dntr or Xylr
phzMS
tf
S: signal
PhzMS
TF|S: complex
PCA
MIT Jamboree 2007
PYO
PYO
Modelling framework
MIT Jamboree 2007
Modelling framework
MIT Jamboree 2007
Qualitative Petri-Net
Modelling & Analysis
• Graphical
representation--Snoopy
• Qualitative analysis
Charlie
– T invariants (cyclic
behavior in pink)
– P invariants
– (constant amount of
output)
• Quantitative Analysis by
continuous Petri Net
– ODE Simulation
MIT Jamboree 2007
Modelling framework
MIT Jamboree 2007
Parameters
• Literature search
• Experts’ knowledge
MIT Jamboree 2007
3
Ordinary Differential Equations
Available!
Created in
MIT Jamboree 2007
3
Parameters
• Literature search
• Experts’ knowledge
MIT Jamboree 2007
3
Model Parameter Refinement
• Modified MPSA
MIT Jamboree 2007
3
Modelling framework
MIT Jamboree 2007
Advantages and disadvantages
of stochastic modelling
• Living systems are intrinsically
stochastic due to low numbers of
molecules that participate in reactions
• Gives a better prediction of the model
on a cellular level
• Allows random variation in one or more
inputs over time
• Slow simulation time
MIT Jamboree 2007
Chemical Master Equations
A set of linear, autonomous ODE’s, one ODE for each
possible state of the system. The system may be written:
•
•
•
•
•
•
•
•
•
Ф → TF
TF → Ф
TF+S → TFS
TFS → TF+S
TFS → Ф
Ф → PhzMS
PhzMS → Ф
PhzMS → PYO
PYO → Ф
- production of TF
- degradation of TF
- association of TFS
- dissociation of TFS
- degradation of TFS
- production of PhzMS
- degradation of PhzMS
- production of pyocyanin
- degradation of pyocyanin
MIT Jamboree 2007
Propensity Functions
MIT Jamboree 2007
MIT Jamboree 2007
MIT Jamboree 2007
Simulink Modelling Environment
MIT Jamboree 2007
In the end…
Our Contributions:
– standard SBML models of the systems
– new biobricks with mathematical description
– Practical comparison of modelling apporaches –
qualitative, continuous, stochastic, based on sound
theoretical framework
– Tools to support synthetic biology (Code available) :
• Minicap: multi-parametric sensitivity analysis of dynamic
systems
• Simulink environment
MIT Jamboree 2007
Objectives
• 1: Design sensor/reporter construct
– Switch on reporter in presence of pollutants
• 2: Create the construct
– Use 3 different sensors to express luciferase or LacZ
• 3: Test the system
– PAH-metabolite and xylene sensors successful
• 4: Development into a machine
– Use Pseudomonas aeruginosa to power a fuel cell
which generates a remote signal sent to base station
• 5: Model and predict outcomes!
MIT Jamboree 2007
Our Constructs So Far…
Native
promoter
Native
RBS
XylR
Double
Terminator
BBa_B0015
Double
Double
Renilla
Renilla
XylR XylR
RBS
Terminator
Terminator
Luciferase
Luciferase
responsive
responsive
RBS BBa_J61101
IRES
XylR BBa_B0015
BBa_B0015
BBa_J52008 BBa_J52008
promoter
promoter
IRES
MIT Jamboree 2007
XylR
Registry Contributions
Number
1
2
3
4
5
6
7
8
9
10
BioBrick Number
BBa_I723032
BBa_I723029
BBa_I723023
BBa_I723031
BBa_I723024
BBa_I723025
BBa_I723026
BBa_I723027
Bba_I7230 30
BBa_I723020
Description
Xylene-sensitive promoter
Xylene-sensitive promoter plus RBS
Xylene-inducible luciferase
Inducible luciferase
PhzM
PhzS
PhzM plus terminator
PhzS plus terminator
Salicylate-inducible transcription factor
Salicylate-sensitive promoter
MIT Jamboree 2007
Students
•
•
•
•
•
•
•
•
•
•
Instructors
•
•
•
•
•
•
•
•
•
Toby Friend
Rachael Fulton
Christine Harkness
Mai-Britt Jensen
Karolis Kidykas
Martina Marbà
Lynsey McLeay
Christine Merrick
Maija Paakkunainen
Scott Ramsay
• Maciej Trybiło
MIT Jamboree 2007
David Forehand
David Gilbert
Gary Gray
Xu Gu
Raya Khanin
David Leader
Susan Rosser
Emma Travis
Gabriela Kalna
Thank You!
MIT Jamboree 2007