Transcript Slide 1

By: Becky Rupnow, Jennifer Kosmicki,
Margot Binetti, and Annie Kuczkowski
Arabidopsis and Gene Silencing; Effects of Acid Rain
Abstract:
Arabidopsis thaliana is an ideal plant organism to be used for studying and experimenting because it behaves
extremely similar to many crop plants found throughout the United States and Canada. It is also useful to study
because it grows fast and matures quickly. In our experiment, we are testing the gene silencing that occurs in the
Arabidopsis plant. When the plant is subjected to stress, the genes that will produce a response are silenced
when the mRNA is chopped up by a dicer protein. In gene silencing, DCL acts as a dicer, where it finds a target
mRNA and cuts it so that transcription cannot happen. Therefore, the specific gene cannot be expressed. In the
wild type of Arabidopsis, these genes that are silenced are stress response genes. When the plant is subjected to
a small amount of stress, it wants to avoid going into stress response by silencing these genes. But in the mutant
plants, the RDR gene and the DCL dicers are not present, which means that the gene silencing will not occur.
Therefore, when subjected to stress, the mutant plants should show more of a stress response than the wild type.
This could come through in many different ways; earlier reproductive stalk, smaller leaves, less leaves, or a
smaller plant. Our specific stress experiment is the effect of acidity in water on the plants. Acid rain is a significant
problem in many places. To test this, we are watering the plants with 4.8 pH water, which is more acidic than
natural rainwater. Under this stress, the mutant plants should exhibit a phenotypic stress response that we can
measure. We will be measuring phenotypic effects such as stalk height, number of leaves, and overall height of
the plant. By separating the control group, getting normal water, and the experiment group, getting acidic water,
we should be able to see a difference after a couple of weeks, and may be able to get an idea about what roles
the RDR and DCL carry in the plants.
Results
After two days of cold germination only seventy-one percent of the seeds planted sprouted.
Only fifty-six of the RDR6 seeds planted sprouted.
The Wild Type leaf growth was stunted by pH levels.
Leaf growth was stunted in DCL4 plants treated with 4.8 pH.
Leaf growth in RDR6 was not stunted by pH levels.
The test Wild Type showed no signs of forming a stalk.
pH levels prevented DCL4 from forming a stalk at the average height that the control DCL4
formed a stalk at.
RDR6 did not show signs of forming a stalk in either the test plants or the control.
Fungus gnats killed the plants before any more conclusive data could be taken.
Conclusion
Duration of germination period affects the plant’s ability to take root.
RDR6 silenced seeds are more fragile in early stages of growth.
RDR6 is not affected by pH level
pH levels stunt DCL4 and Wild Type plants
Formation of a stalk is stunted by increased water acidity.
Fungus gnats killed the plants when they began to feed on them.
What’s Next?
After conducting this experiment, we found many variables that had an effect on our data. For
one, the germinating seeds endured two days of germination, which effected the growth.
Because of that, only about 70% of our plants came up. Also, the gnats came and destroyed our
plants before we could finish the experiment. This may have prevented some data from being
expressed, and therefore our experiment was not complete.
If this experiment were to be conducted again, we believe that the variables should stay the
same. The pH level of 4.8 was enough to send the plants into shock, but was not enough to kill
the plants. However, we would need to make sure that the seeds only had one day of cold
germination, and we would also need to be careful to administer the acidic water at the right time,
when the plants have gotten somewhat strong but can still show an effect. Also, variables such
as gnats and other environmental factors need to be kept out of the experiment. In the future, we
need to make sure that we keep the plants in an enclosed space where only the variable being
tested is subjected to the plants.
By doing this experiment in more exact detail, we believe that it would be possible to find a
specific thing that the RDR and DCL proteins do. Because of our experimental error, we had an
idea of the difference between the test and control groups, but the data was blurred because of
the extra variables. By doing the experiment correctly, the experimenters could discover the
detailed purposes of the RDR and DCL.
Sources
•http://www-plb.ucdavis.edu/labs/chan/images/arabidopsis.jpg
•http://www.nature.com/nrg/journal/v4/n1/images/nrg982-f1.jpg
Gene silencing involving DCL and RISC
Arabidopsis thaliana plant with reproductive stalk