Transcript Document

Hydro-pathy/phobicity/philicity
• One of the most commonly used properties
is the suitability of an amino acid for an
aqueous environment
• Hydropathy & Hydrophobicity
– degree to which something is “water hating” or
“water fearing”
• Hydrophilicity
– degree to which something is “water loving”
Hydrophobicity/Hydrophilicity
Tables
• Describe the likelihood that each amino
acid will be found in an aqueous
environment - one value for each amino
acid
• Commonly used tables
– Kyte-Doolittle hydropathy
– Hopp-Woods hydrophilicity
– Eisenberg et al. normalized consensus
hydrophobicity
Kyte-Doolittle hydropathy
Amino Index
Acid
R -4.5
K -3.9
D -3.5
Q -3.5
N -3.5
E -3.5
H -3.2
P -1.6
Y -1.3
W -0.9
Amino Index
Acid
S -0.8
T -0.7
G -0.4
A
1.8
M
1.9
C
2.5
F
2.8
L
3.8
V
4.2
I
4.5
Example Hydrophilicity Plot
This plot is for a tubulin, a soluble cytoplasmic protein.
Regions with high hydrophilicity are likely to be exposed to the
solvent (cytoplasm), while those with low hydrophilicity are
likely to be internal or interacting with other proteins.
Amphiphilicity/Amphipathicity
• A structural domain of a protein (e.g., an helix) can be present at an interface between
polar and non-polar environments
– Example: Domain of a membrane-associated
protein that anchors it to membrane
• Such a domain will ideally be hydrophilic
on one side and hydrophobic on the other
• This is termed an amphiphilic or
amphipathic sequence or domain
Screenshot of a phospholipid bilayer in the process of
its modeling. Shown is a computational cell consisting
of 96 PhCh molecules and 2304 water molecules
which on the whole make up 20544 atoms.
Average number of hydrogen bonds within the first water shell around an ion
Molecular Dynamics: Introduction
Newton’s second law of motion
Molecular Dynamics: Introduction
We need to know
The motion of the
atoms in a molecule, x(t)
and therefore,
the potential energy, V(x)
Molecular Dynamics: Introduction
How do we describe the potential energy V(x) for a
molecule?
Potential Energy includes terms for
Bond stretching
Angle Bending
Torsional rotation
Improper dihedrals
Molecular Dynamics: Introduction
Potential energy includes terms for (contd.)
Electrostatic
Interactions
van der Waals
Interactions
Molecular Dynamics: Introduction
In general, given the values x1, v1 and the
potential energy V(x), the molecular
trajectory x(t) can be calculated, using,
xi  xi 1  vi 1t
1 dV ( x)
vi  vi 1  m
xi1 t
dx
How a molecule changes during MD
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
Repulsion
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
Mixed terms
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
Repulsion
• Ustr stretch
• UvdW van der Waals
• Ubend bend
• Uel electrostatic
• Utors torsion
Mixed terms
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
Repulsion
• Ustr stretch
• UvdW van der Waals
- + - + Attraction
• Ubend bend
• Uel electrostatic
• Utors torsion
Mixed terms
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
Repulsion
• Ustr stretch
• UvdW van der Waals
+ - + - Attraction
• Ubend bend
• Uel electrostatic
• Utors torsion
Mixed terms
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
Repulsion
• Ustr stretch
• UvdW van der Waals
+ - + - Attraction
+
-
• Ubend bend
• Uel electrostatic
• Utors torsion
Mixed terms
• Upol polarization
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
Repulsion
• Ustr stretch
• Ubend bend
• UvdW van der(2)Waals
+ - + - Attraction
u
u(2)
++
-
• Uel electrostatic
u(N)
• Utors torsion
Mixed terms
• Upol polarization
++
-
Contributions to Potential Energy
• Total pair
energy
breaks
into
a
sum
U (r N )  U str  U bend  U tors  U cross  U vdW  U el  U pol
of terms
Intramolecular only
Repulsion
• Ustr stretch
• Ubend bend
• UvdW van der(2)Waals
+ - + - Attraction
u
u(2)
++
-
• Uel electrostatic
u(N)
• Utors torsion
Mixed terms
• Upol polarization
+
-
Modeling Potential energy
dU
1 d 2U
2
U(r) 
(r  req ) 
(r

r
)
 U(req ) 
eq
2
dr r req
2 dr r r
eq
1 d 3U

3 dr

r req
n
1
d
U
3
(r  req ) ....
n! dr n
(r  req ) n
r req

Modeling Potential energy
0
0 at minimum
2
1dU
dU
2
U(r)  U(req ) 
(r

r
)
(r  req ) 
eq
2
2 dr r r
dr r req
eq
1 d 2U
1
2
2
U(r) 
(r  req )  kAB (r  req )
2
2 dr r r
2
eq

Stretch Energy
• Expand energy about equilibrium position
o
U (r12 )  U (r12
)
define
dU
dr
r ro
o
(r12  r12
)
d 2U
dr 2
(neglect)
o 2
(r12  r12
) 
r r o
minimum
o 2
U (r12 )  k (r12  r12
)
harmonic
Morse
Energy (kcal/mole)
250
200
150
U (r12 ) in
 D strained
1 e
 geometries
• Model fails
 r12 2
100
50
–
dissociation
better energy
model is
0
theforce
Morse
constantpotential
-0.4
-0.2
0.0
0.2
0.4
Stretch (Angstroms)
0.6
0.8
Bending Energy

• Expand energy about2equilibrium position
U ( )  U ( o ) 
define
dU
d U
(   o ) 
d   o
d 2
(   o ) 2 
(neglect)
  o
minimum
U ( )  k (   o )2
harmonic
u(4)
– improvements
based on including higher-order
o 2
U (c )  k (c  c )
terms
c
• Out-of-plane bending
Torsional Energy
• Two new features
f
– periodic
– weak (Taylor expansion in f not appropriate)
• Fourier series
U (f )  n1Un cos(nf )
– terms are included to capture appropriate
minima/maxima
– depends on substituent atoms
– e.g., ethane has three mimum-energy conformations
» n = 3, 6, 9, etc.
• depends on type of bond
Van der Waals Attraction
+- +• Correlation of electron fluctuations
• Stronger for larger, more polarizable
molecules
– CCl4 > CH4 ; Kr > Ar > He
att
U vdW
-+ -+
C
8

O
(
r
)
6
r
• Theoretical formula for long-range behavior
• Only attraction present between nonpolar
molecules
– reason that Ar, He, CH4, etc. form liquid phases
• a.k.a. “London” or “dispersion” forces
Van der Waals Repulsion
• Overlap of electron clouds
• Theory provides little guidance on form of
model
rep
A
rep
UvdW
U vdW
rn
• Two popular treatments
inverse power
exponential
• typically
A C n ~ 910- 12
U
20
12

r6
LJ
Exp-6
• Combine with attraction term
r
8
3
x10
10
– Lennard-Jones model
Beware of anomalous
Exp-6 short-range
attraction
4
C
 Br parameters
two
U  Ae
 6
r
a.k.a. “Buckingham” or “Hill”
6
15
Exp-6
Exp-6 repulsion is
slightly softer
2
5
0
0
2
4
6
8
Ae Br
1.0
1.2
1.4
1.6
1.8
2.0
Electrostatics 1.
• Interaction between
charge inhomogeneities
• Modeling approaches  
– point charges
– point multipoles
• Point charges
– assign Coulombic charges
to several points in the
qi q j
molecule U (r )  4 r
0
– total charge sums to charge
on molecule (usually zero)

Lennard-Jones
Coulomb
1.5
1.0
0.5
0.0
-0.5
-1.0
1
2
3
4
Electrostatics 2.
• At larger separations, details of charge
distribution are less important
  0, Q  0
Vector
features
  i qiri capture

• Multipole statistics
basic
Q  i qiriri
– Dipole
– Quadrupole
– Octopole, etc.
Tensor


  1 3 2 3(ˆ1  rˆ )(ˆ 2  rˆ )  ( ˆ1  ˆ 2 )
r


   0, Q  0

Q
Q
• Pointuddmultipole models based on long-range
behavior
3 1Q2 
– dipole-dipole
u 
( ˆ
dQ
uQQ 
2 r4 
ˆ)
1 r
5(Qˆ2  rˆ )2  1  2(ˆ1  ˆ2 )(Qˆ2  rˆ )
3 Q1Q2 
2
2
2
2 2
1

5
c

5
c

2
c

35
c
c2  20c1c2c12 
1
2
12
1
5

4 r
– dipole-quadrupole
Axially
symmetric
quadrupole
Polarization
• Charge redistribution due to influence of
surrounding molecules
++
+
– dipole moment in bulk different
-
from that in vacuum
• Modeled with polarizable charges or
multipoles
• Involves an iterative calculation
– evaluate electric field acting on each charge due
to other charges
Polarization
ind  E
Approximation

ind ,i  E i
Ei  
ji

q j rij
rij3
ij 

  3 
3rij 1


r
r
ij

ji ij 
rij
Electrostatic field does not include contributions
from atom i
Common Approximations in Molecular
Models
• Rigid intramolecular degrees of freedom
– fast intramolecular motions slow down MD calculations
• Ignore hydrogen atoms
– united atom representation
• Ignore polarization
– expensive n-body effect
• Ignore electrostatics
• Treat whole molecule as one big atom
Qualitative
– maybe anisotropic
• Model vdW forces via discontinuous potentials models
• Ignore all attraction
• Model space as a lattice
– especially useful for polymer molecules
Molecular Dynamics: Introduction
Equation for covalent terms in P.E.
 k (l  l )   k    
Vbonded ( R) 
l
0
bonds


2
2
0
angles
k (   0 ) 2 
impropers
 A [1  cos(nf  f )]
n
torsions
0
Molecular Dynamics: Introduction
Equation for non-bonded terms in P.E.
Vnonbonded ( R) 

i j
rijmin 12
rijmin 6
qi q j
( ij [(
)  2(
) ]
rij
rij
4 r  0rij
DNA in a box of water
SNAPSHOTS
Protein dynamics study
• Ion channel / water
channel
• Mechanical properties
– Protein stretching
– DNA bending
Movie downloaded from theoreticla biophysics group, UIUC
Solvent dielectric models
QiQ j
V
rij
Effetive dielectric constant

eff r  r 
r 1


rS
rS

2rS

2
e
 
2
S  0.15Å1 ~ 0.3Å1
2