原料药中残留溶剂控制限度的设置和论证

Download Report

Transcript 原料药中残留溶剂控制限度的设置和论证

国家食品药品监督管理局培训中心高级培训班
“美国仿制药申报最新要求和案例分析”
FDA对药物杂质的控制要求
Dr.George Ma
马小波博士
Toronto, CANADA
多伦多市,加拿大
FDA对药物杂质的控制要求:Contents 目
录
•
•
•
•
•
•
•
•
•
•
原料药与成品药中的有机杂质
有机杂质来源和控制
有机杂质控制限度的论证
案例分析:杂质控制限度的设置和论证
练习-杂质控制限度的设置和论证
原料药与成品药中的残留溶剂
残留溶剂的指导原则和控制限额的建立
案例分析:如何建立残留溶剂控制限额
具有基因毒性杂质的控制
练习-残留溶剂控制限额的建立和论证
Drug Production and Quality Control
Synthesis of API
FDA对药物杂质的控制要求
原料药与成品药中的有机杂质
 1999年11月,FDA-“仿制药申请的原料药杂质研究指导原则”,“仿制
药申请的制剂杂质研究指导原则”。
 2003年,ICH修订的Q3A(R)“新原料药杂质研究指导原则”,“新制剂
的杂质研究指导原则”(简称Q3B(R))。
 杂质分类
– 有机杂质
 合成杂质(Synthetic Impurity)或工艺杂质(Process Impurity):一般来自生产过程
中残留的原料、中间体、试剂、配体和催化剂以及反应副产物。只与原料药的生产
过程有关,在原料药和制剂的储存中一般不可能增长。通过对合成路线的分析可以
确定某一杂质是否为合成杂质。
 降解产物(Degradation Product):来源于原料药通过各种不同的化学反应途径的降
解,一般需要结合对合成路线的分析和试验研究的结果,以确定某一杂质是否为降
解产物。
 有的有机杂质既是合成杂质,又是降解产物。
– 无机杂质:来自生产过程所用的试剂(如氯化物)、配体和催化剂(如钯,
铂等),包括重金属或其它金属残留,以及无机盐(例如,助滤剂、活性炭
等)。它们通常是已知和确定的。
– 残留溶剂:生产过程中使用后未完全除去的溶剂(如甲醇、甲苯、四氢呋喃
等),残留的可挥发性试剂(如三乙胺等)和反应中生成的可挥发产物。
有机杂质来源
常见的降解反应
常见的降解反应
确定降解产物-强制降解研究
(Forced Degradation Study)


强制降解试验:将原料药或制剂置于比通常储存条件剧烈得多的试验条件下进行稳定
性考察的一系列试验。
目的:





了解该药品的稳定性及其降解途径与降解产物。
在一定程度上对有关物质分析方法的专属性进行验证。
实际操作:试剂的浓度、反应的温度和时间等都应根据具体情况作调整。
强制降解程度:根据经验一般认为,控制适当的强制降解条件,从而达到大约10%的
原料药降解是比较合适的。
常见的强制降解具体试验项目与试验条件
Stress Type
强制降解类型
Solution Stress
溶液降解
Stress
固态降解
Common Stress
常用强制降解
Common Forced Degradation Conditions 常见强
制降解条件
Acid 酸
0.1N HCl , 室温-100℃,4小时
Base 碱
0.1N NaOH,室温-100℃,4小时
H2O2 双氧水
1-3% H2O2, 室温,4小时
Heat 加热
H2O, 100℃,4小时
UV & Visuable Light 紫外光和可见光(300-800nm)
15小时(相当于波长范围为300-800nm,约2.0百万勒克斯时
Thermal 加热
60 ℃,14天
Heat/humidity 加热/湿度
40 ℃/75%RH,14天
UV & Visuable Light 紫外光和可见光(300-800nm)
15小时(相当于波长范围为300-800nm,约2.0百万勒克斯时
确定降解产物-原料药和制剂的稳定性试验
•
•
•
•
•
•
•
•
长期(25 ℃±2 ℃、相对湿度60% ±5%、至少12个月)稳定性试验
加速( 40 ℃±2 ℃、相对湿度75% ±5%、至少6个月)稳定性试验
分析研究收集到的稳定性测试数据(Stability Data)也是确定降解产物的重
要依据之一。一般测定不同时间样品的HPLC图谱并进行比较分析,并与长期
保留制剂样品的测定结果进行比较。
在强制降解试验研究过程中注意观察样品外观性状、原料药含量等变化,并
与杂质检查结果相互印证。
原料药和杂质的分离和检测:将可能的中间体和副产物作为杂质进行柱效、
流动相及流动相比例、波长和分离度等方法学的研究。
待方法建立成熟后,根据中间体和副产物的安全性和获得杂质标样的难易程
度,决定是否定为已知杂质。
如果杂质标样难以得到,且比较安全,可考虑采用杂质校正因子加上相对保
留时间的方法,或采用杂质相对保留时间加上自身对照的方法,对该杂质进
行定量分析。
如果得不到该杂质样品作为标样,对于有紫外吸收的样品可以用二极管阵列
检测器,考察未精制的粗品,并对比已精制过的样品,确定粗品种各成分的
分离度和样品中可能杂质的检测波长。方法确立后,可采用自身对照方法或
面积归一化法控制杂质。
原料药与成品药中的有机杂质

药品中有机杂质的分类
–
有机杂质


–
特定杂质(Specified Impurities):特定杂质是指在质量标准中分别规定了明确的
限度,并单独进行控制的杂质。特定杂质包括化学结构已知的杂质(Specified
Identified Impurity) 和化学结构未知(Specified Unidentified Impurity)的杂质。
美国药典通常采用代号来指认特定杂质,如相关化合物A(Related Compound A)
等。
非特定杂质( Unspecified Impurities ):在标准中未单独列出,而仅采用一个通
用的限度进行控制的一系列杂质。其结构未知,在药品中出现的种类与几率并不
固定。一般采用合适的定性分析指标加以指认,如相对保留时间为3.5的杂质。
有机杂质检测

确定原料药和制剂中潜在的合成杂质和降解产物,需要应用专业的有机化学知识
对有关合成化学反应和条件、原料药化学结构、理化性质、稳定性等进行全面的
科学分析和论证,并且比较实验室对样品的常规分析和强制降解(Forced
Degradation Study),以及稳定性研究的结果。
Impurities: Origination & Identification
Classification of impurities
•
Synthetic Impurities (Residual substances in the
synthesis)
Starting material
By-products
Intermediates
Degradation during synthesis
Reagents, ligands and catalysts
•
Degradation Products
•
•
•
•
•
•
Impurity ResourcesAPI & Drug Product
Manufacturing
Processes
Hydrolysis
Oxidation
Esterification
Elimination of water, HCl, etc.
Dehydrogenation
MeOH, EtOH, IPA, THF,
Dichloromethane, Acetone,
Triethylamine, etc.
Residual Solvents/OVI’s
Solvents/reagents used in the reactions, purification process or formed during
reaction
Impurities: Origination & Identification
Lists of Impurities in ICH
Organic impurities
•
•
•
•
Each identified specified impurity
Each unidentified specified impurity
Any unspecified impurity with an acceptance criterion of not more
than (≤) the figure in the identification threshold in Attachment 1, ICH
Q3A(R)
Total impurities
Residual solvents
Inorganic impurities
有机杂质控制限度设置
•
美国药典杂质:在美国药典正文(monograph)中列为特定杂质(Specified
Impurities)的杂质,其控制限度应设置不高于美国药典的限度。
•
非美国药典杂质:如果美国药典正文没有对该杂质设置控制限度,或者美国药
典没有改药物的正文,则根据ICH的杂质指导原则Q3A(R)和Q3B(R),同时也参
考其它药典,如欧洲药典(EP)和英国药典(BP)来设置该杂质的控制限度。
就ICH的杂质指导原则来说,如果该杂质在实验测试中的实际观测水平高于ICH
的鉴定限,则必须确定为特定杂质,其控制限度必须设置为不高于ICH的论证
限(Qualification Threshold)。
•
非特定杂质:

在药品中出现的种类与几率并不固定。因此,在药品的临床前与临床研究中,很难对
这些杂质的安全性进行评估。

为将这些杂质可能带来的安全性隐患降至最小,ICH的杂质指导原则Q3A(R)和
Q3B(R)对其限度用鉴定限(Identification Threshold)做了明确的规定,要求在原料
药标准中任何单个非特定杂质的限度不得超过鉴定限。

在仿制药或改剂型药品以及药品上市后变更原料药生产商等研究中,即使出现了新的
杂质,只要新杂质的含量低于表中的鉴定限,就可以认定这些新杂质的安全性。
有机杂质控制限度设置
•
•
•
•
•
Find out the Maximum Daily Dose (MMD,每日最大剂量) from PDR,
CPS, etc.
Use MDD to calculate the ICH Thresholds
Reporting Threshold (RT)
Identification Threshold (IT)
Qualification Threshold (QT)
每日最大剂量
1
报告限
(Reporting Threshold)
鉴定限
(Identification Threshold) 3
论证限
(Qualification Threshold) 3
≤ 2 g/day
0.05%
每日摄入量0.10%或1.0毫克
(取低值)
每日摄入量0.15%或1.0毫克
(取低值)
≥ 2 g/day
0.03%
0.05%
0.05%
2,3
每日原料药的服用量。
更高的报告限必须提供充足的理由。
3 如果杂质的毒性特别高则适合于更低的报告限。
1
2
Control of Impurities: Compendia & ICH
Establishing Acceptance Criteria for Impurities
•
•
•
•
•
Acceptance criteria (limits) for impurities should be set no higher
than the level that has been qualified.
In establishing impurity limits, the first critical consideration is
whether an impurity is specified in the USP.
If there is a monograph in the USP that includes a limit for an
identified specified impurity, the limits should be set no higher than
the official compendial limit.
If qualified by an FDA-approved human drug product, the limits must
be consistent with the level observed in the approved human drug
product.
In other circumstances (e.g. metabolites), the limits may need to be
set tighter than the qualified level to assure drug substance quality. If
the level of the impurity is above the level specified in the USP,
qualification is necessary. Then, if appropriate qualification has been
achieved, an applicant may wish to petition the USP for revision of
the impurity’s limits.
Control of Impurities: Compendia & ICH
ICH Q3A(R) and Q3B(R). Scope
•
•
•
Does not apply to new drug substances (Q3A(R) ) or products (Q3B(R)) used during
the clinical research stages of development.
Both do not cover:
Biological/ biotechniological products
Fermentation products
Peptides
Semi-synthetic products
Oligonucleotides
Herbal products
Radiopharmaceuticals
Crude products of animal
Plant origin
Q3B (R) does not cover:
 Extraneous contaminants that should not occur in new drug products and are
addressed as GMP issues.
 Polymorphic forms
 Enantiomeric impurities
制剂的杂质限度
Q3B(R2). ICH Threshold for Degradation Products in New
Drug Products
每日原料药
最大剂量 *
报告限
(Reporting Threshold)
鉴定限
(Identification Threshold)
论证限
(Qualification Threshold)
≤ 1g
0.1%
N/A
N/A
> 1g
0.05%
N/A
N/A
< 1mg
N/A
1.0% or 5ug TDI
N/A
1mg ~ 10mg
N/A
0.5% or 20ug TDI
N/A
> 10mg ~ 2g
N/A
0.2% or 2mg TDI
N/A
< 10mg
N/A
N/A
1.0% or 50ug TDI
10mg ~100mg
N/A
N/A
0.5% or 200ug TDI
> 100mg ~2g
N/A
N/A
0.2% or 3mg TDI
> 2g
N/A
0.10%
0.15%
*取低值,按百分含量或每日总摄入量(TDI)计。
有机杂质控制限度论证
•
杂质控制限度论证:对一定限度的杂质的生物安全性进行研究和评估,
建立杂质的可接受限度并提供包括安全性考虑在内的依据。如果杂质
在样品测试中的实际观察值较高,而需要设置一个高于美国药典或
ICH论证限( Qualification Threshold )的控制限度时,则必须提供一
个充分合理的论证来说明所设的控制限度是合理的。
•
有时将杂质水平降低至美国药典或ICH论证限以下是最为简单的杂质
控制方法。
•
对杂质控制限度的论证如果被FDA接受,申请人还可以向美国药典提
出修改该杂质限度的申请(Petition)。
制订和论证
杂质合理限
度的决策树
有机杂质控制限度的论证方法
•
对比分析法:仿制药申请中原料药的杂质可以采用相同的已验证的分析方法
(如HPLC法),与FDA已批准的同品种人用制剂(Reference Listed Drug, 简
称RLD,参照药品)进行对比研究。如果无法获得参照药品,也可对含有相同
原料药,以及相同给药途径和特征的不同药物制剂(如片剂对胶囊)的杂质含
量进行研究。如果仿制药申请原料药中已鉴别杂质的水平与相应已获准上市人
用药物的杂质水平相当,则可以认为该杂质得到了合理控制。
•
科学文献和主要代谢物法:如果科学文献已经证明某一水平的杂质在安全性方
面没有问题,那么根据这一水平建立的该杂质的限度就无需进一步论证。此外,
如果科学文献证明某杂质本身也是原料药在体内代谢的主要代谢物,其安全性
是显而易见的,因而即使对该杂质设置高于ICH论证限的控制限度,通常可以
也认为该杂质已得到合理控制。
•
遗传毒性研究法:由于遗传毒性试验费时间且成本高昂,此法一般是在前两种
都无法对杂质合理研究论证的情况下才采取的方法。这项研究可以采用含该杂
质的制剂或原料药直接进行研究,但实际上采用已分离的杂质进行研究可能更
为恰当。
有机杂质控制限度的论证方法
•
杂质的合理控制应基于多种因素,包括患者人群、日剂量、给
药途径以及给药周期。杂质合理控制的最基本原则就是考虑其
安全因素。根据ICH的杂质指导原则Q3A(R)和Q3B(R)。
当满足下述一个或多个条件时,可以认为该杂质的控制限度是合
理的:


当杂质实际观察水平以及控制限度未超出FDA已经批准的人用制剂
杂质实际观察水平;
当杂质本身是原料药在动物和/或人体内重要的代谢产物时;

当杂质实际观察水平以及控制限度有充分合理的科学文献支持时;

当杂质实际观察水平以及控制限度未超过通过体外遗传毒性比较研
究得出的正确评估限度时。
有机杂质控制限度的论证方法
当杂质本身是原料药在动物和/或人体内重要的代谢产物时
•
如果有可靠文献报道该杂质系人体代谢产物,其限度的确定并不需要
从安全性方面进行论证。
•
限度设定时主要考虑批分析数据、稳定性研究数据。
•
具体限度的确定因药物而异,但应能保证批间药品质量的一致性,且
得到批分析数据、稳定性数据的支持。
Example:
•
Simvastatin EP Imp A, Degradation Product: Proposed to increase
the limit from 0.5% to 1.0%.
•
Rationale: The FDA guideline for ANDAs: Significant metabolites do
not need further qualification. The metabolic profiles of Simvastatin
in human and dog plasma showed that Simvastatin EP Imp A is one
of the major metabolites.
Impurity Limit Establishment: Examples
Simvastatin Tablets USP. Limits for SV RCA and SV
RCB
•
Simvastatin (Zocor): A lipid-lowering drug approved by FDA in
Dec.1991. It reduces cholesterol by inhibiting an enzyme in the liver
(HMG-CoA reductase) required for the production of cholesterol. Other
statins include Lovastatin (Mevacor), atorvastatin (Lipitor), fluvastatin
(Lescol), and rosuvastatin (Crestor).
•
SV RC A and SV RC B were controlled at NMT0.5% and 0.1%,
respectively before. However, the results form the long term stability
test exceeded the limits.
•
SV RC B, Degradation Product: Proposed to increase the limit from
0.1% to 0.2%.
•
Rationale:
 The ICH guideline Q3B(R): QT for degradation products can be
0.5% or 200mg TDI, whichever is lower, for the drug with MDD of
10-100mg.

MDD for Simvastatin is 80mg. QT can be 0.25%.
Impurity Limit Establishment: Examples
Bupropion ER Tablets: Justification for Increasing Limits
•
The limit for RC m-chlorobenzoic acid in Bupropion Hydrochloride ER Tablets is proposed
to increase from 0.3% to 0.5%.
•
Rationale:
 Bupropion is extensively metabolized in humans, rats and dogs. Metabolism studies
in human indicated that bupropion was metabolized to m-chlorohippuric acid, erythroamino alcohol (EB), threo-amino alcohol (TB), hydroxy metabolite (HB) (references
1-3).
 It was obvious that m-chlorohippuric acid, which is excreted as the major urinary
metabolite, was resulted from oxidation of the bupropion side chain to give mchlorobenzoic acid followed by conjugation with glycine. Other aminoalcohol
metabolites such as EB, TB and HB are formed from hydroxylation nof the tert-butyl
group of bupropion and /or reduction of the intact parent aminoketone. This
metabolism pathway has been confirmed by the fact that the metabolism in rats and
dogs gave predominantly m-chlorohippuric acid and m-chlorobenzoic acid as the
metabolites, which are formed from side chain oxidative cleavage.
 The FDA guideline for impurities for ANDAs (See Guidance for Industry. ANDAs:
Impurities in Drug Substances) indicates that the impurities that are significant
metabolites do not need further qualification.
 It is considered reasonable to increase the test limit from 0.3% to 0.5% for BP RC2
(m-chlorobenzoic acid ).
Impurity Limit Establishment: Examples
Synthetic Impurities: No Need to Monitor/Report in DP Specifications
•
Response form FDA on this type of question: Synthetic
impurities need not be reported or monitored for release
and /or stability testing of the drug product. Thus, no
drug product limits for drug substance process impurities
need be included in the drug testing protocol.
•
Rationale:



Synthetic impurities are generated during the manufacturing
process of the drug substance.
They are controlled in the drug substance specification.
They are not expected to increase during the production and
storage of the drug product.
Impurity Limit Establishment: Examples
Semi-Synthetic or Synthetic Chemical?
• “Why is the FDA asking us to qualify an impurity observed in this
semi-synthetic drug substance? Aren’t semi-synthetics excluded
from the recommendations?”
• Rationale:
It depends on how far the drug substance is from the naturally
derived source material. In general, drug substances separated from
the source material by one or two chemical manipulations are still
excluded from the recommendations. However, the Agency believes
that those drug substances separated from the source material by
several synthetic steps resulting in multiple isolated and purified
intermediates resemble traditional chemicals more than they
resemble classical semi-synthetic moieties. Hence, the new
recommendations would apply to such drug substances.
Impurity Limit Establishment: Examples
Clyndamycin. Semi-synthetic or Synthetic Chemical?
案例分析:有机杂质控制限度设置和论证
卡托普利(Captopril) 原料药的合成路线
卡托普利(Captopril)有机杂质控制限度的设置
卡托普利(Captopril)有机杂质控制限度的
设置
 美国药典和欧洲药典都发表了有关卡托普利原料药的正文。根据美国药典正文,
Captopril disulphide 杂质控制限度不超过1.0%,而其它单一杂质不超过0.2%,总杂质
不超过0.5%。欧洲药典正文把杂质A,B,C,D,E和F作为特定杂质控制在不超过0.15%(其
中例外的是杂质A控制在≤1.0%,杂质F控制在≤0.2%),非特定杂质控制在不超过
0.10%,总杂质不超过1.2%。
 如果原料药生命符合美国或欧洲药典标准,通常必须符合该药典正文的每一项要求。然
而,对于与合成路线毫无关系的药典杂质,在实验测试结果显示“None Detected未检
出”的基础上,可以从合成路线和化学反应机理的角度进行论证,提供足够理由说明在
原料药标准中可以不设限度进行常规控制。
 下面以声明符合美国药典标准的卡托普利为例来说明如何提供适当的理由对所指定的标
准进行论证。从化学反应机理的角度考虑,杂质B和D产生于含溴的原料,与康乐化学
公司的合成路线无关。标准规格中勿需设定限度来控制杂质B和D。
 卡托普利的最高剂量为450毫克/日。根据ICH指导文件Q3A(R),原料药的报告限
(Reporting Threshold)为0.05%,鉴定限(Identification Threshold)为0.10%,论证
限(Qualification Threshold) 为0.15%。
 原料药中的控制限度设置如下:已知杂质C和E中单一已知杂质不超过0.1%,杂质A不
超过0.5%,杂质F不超过0.2%,单一未知杂质不超过0.10%,总杂质不超过0.5%。此
杂质控制限度符合或紧于美国药典要求,也与ICH和原料药厂家的要求一致。
练习-杂质控制限度的设置和论证
•
Michelle is working in a generic pharmaceutical company to develop a drug
product called OME for ulcer disease. She adopts the European
Pharmacopoeia HPLC method to analyze the drug substance and observed
known EP impurities A (0.25), B(0.46%) and C (0.20%), and an unknown
impurity 1 (0.18%). The maximum daily dose for OME is 120mg. It is reported
that impurity B is a degradation product and metabolite, impurities A is also a
degradation product, while impurity C is a synthetic impurity.
Table 1. ICH Thresholds for Impurities in New Drug Substances
Maximum Daily
Dose-1
1
Reporting Threshold
2,3
Identification
Threshold 3
Qualification
Threshold 3
≤2g/day
0.05%
0.10% or 1.0mg per
day intake
(whichever is lower)
0.15% or 1.0mg per
day intake
(whichever is lower)
>2g/day
0.03%
0.05%
0.05%
The amount of drug substance administered per day.
2 Higher reporting thresholds should be significantly justified.
3 Lower thresholds can be appropriate if the impurity is unusually toxic.
练习-杂质控制限度的设置和论证
Table 2. ICH Thresholds for Degradation Products in New Drug Products
Active ingredient
maximum daily dose
Reporting
Thresholds
Identification
Threshold*
Qualification
Threshold*
≤ 1g
0.1%
N/A
N/A
> 1g
0.05%
N/A
N/A
< 1mg
N/A
1.0% or 5µg TDI
N/A
1mg ~ 10mg
N/A
0.5% or 20µg TDI
N/A
> 10mg ~ 2g
N/A
0.2% or 2mg TDI
N/A
< 10mg
N/A
N/A
1.0% or 50µg TDI
10mg ~100mg
N/A
N/A
0.5% or 200µg TDI
> 100mg ~2g
N/A
N/A
0.2% or 3mg TDI
> 2g
N/A
0.10%
0.15%
* Take the lower figure, % or total daily intake (TDI)
练习-杂质控制限度的设置和论证
Reporting
Threshold (%)
Impurity A
(%)
Impurity B
(%)
Impurity C
(%)
Unknown
Impurity 1
(%)
ICH limits for Drug substance
Recommended Limits for Drug
Substance
ICH limits for Drug Product
Recommended Limits for Drug
Product



Use the above Tables 1 and 2 as references and other knowledge you learned
from this course to establish appropriate controlling limits and fill into Table 3 for
Impurities A, B and C for both drug substance and drug product if necessary.
It is not required to establish a limit to control impurity C for drug product. However,
the HPLC method for degradation products should be capable of detecting and
separating impurity C from other impurities. Why?
Why can a limit for a degradation product be considered qualified even it exceeds
the ICH limit?
FDA对药物杂质的控制要求
原料药与成品药中的残留溶剂
•
•
•
•
•
•
•
1997年,ICH制订了“Q3C杂质:残留溶剂的指导原则”。
美国药典(USP)2008年修正了第<467>节,重新命名为残留溶剂(Residual
solvents)。
ICH将药品生产及纯化过程中常用的69种有机溶剂按照对人体和环境的危害程度
分为4类。
第1类溶剂:指已知或极可能对人体致癌和对环境有害的溶剂,在药品制造过程
中必须避免使用。其残留量必须严格控制在规定的范围内。
第2类溶剂:指无基因毒性但有动物致癌性的溶剂,可以选择适当的方法并建立
一定的限度进行控制。
第3类溶剂:指对人体低毒的溶剂,可用于生产过程中。其残留溶剂的量如果不
高于0.5%则无需论证。
未分类溶剂:指目前没有足够毒性资料的溶剂,如异丙醚(Isopropylether)。
由于无响应的“允许日接触量”(PDE)资料,生产厂商在使用时必须提供这
些溶剂在制剂中的残留水平,以及对产品安全影响的论证报告,或者根据FDA
在2008年12月出版的控制基因毒性和致癌性以及任何可疑但未知具体毒理的杂
质的指导原则(草案),控制这类残留溶剂日接触量不超过1.5微克。
ICH Q3C and USP General Chapter <467>
“…residual solvents in pharmaceuticals are defined
as organic volatile chemicals that are used or
produced in the manufacturing of drug
substance or excipient, or in the preparation of
drug products.”
[Note: “residual solvents” refers to the amount
not removed during the purification of the
product]
USP: Residual Solvents
•
General Notices Statement: All articles are
subject to be tested for residual solvents
(Delayed implementation)
•
Monograph Changes
 <467> Residual solvents: meets the
requirements added in all monograph
(Delayed Implementation)
 Revised retracted
Residual Solvents <467>:Main Points
•
•
Driving force: Safety of the patient;
recommended use of less toxic solvents
Testing is to be performed only for solvents
“likely to be present”


•
Used or produced in the final manufacturing step
Used in previous steps and not removed by a
validated procedure
The limits for acceptable concentrations listed in
the Chapter are for drug products, not for its
components
Residual Solvents <467>:Main Points
•
The concentration in the drug product may be
 Calculated from the concentrations of components
 Determined experimentally; mandatory if
 Solvents are used in its manufacture
 Cumulative calculation exceeds limits
•
•
•
Manufactures of drug products may rely on data
provided by the suppliers of components
Provides unambiguous identification and qualification
method
Includes options to allow use of materials that exceed
the limits established
Residual Solvents <467>:Main Points, Continued…
• “The procedures described in this general chapter are to
be applied wherever possible. Otherwise, manufactures
may select the most appropriate validated analytical
procedure for a particular application.” (ICH and EP take
similar approach, see <1225>Validation of Compendial
Procedures
• Submission of alternative methods is not required.
Scope
• ICH “…The guide does not apply to existing
marketed products.”
• USP (and EP) “This general chapter applies to
existing drug substances, excipients and
medical products whether or not they are the
subject of a monograph of the Pharmacopeia”.
Risk-based classification of solvents
• Class 1 -Unacceptable toxicities; should be
avoided, unless their use can be strongly
justified in a risk-based assessment.
• Class 2 -Less severe toxicities; should be limited.
• Class 3 -Less toxic; should be used where
practical.
[Note: Other solvents may be used but only after
approval from a regulatory agency.]
Supplier
• USP <467> Limits in excipients for each
excipient
 Limits are not specifications for each excipient
 Some excipients used as drug products
 Manufacturer of drug product has to calculate, based
upon PDE and limit.
• USP withdrew <467> requirement in excipient
monographs
 A requirement is listed in General Notices; no need
for unnecessary testing.
Supplier
• Generally, Class 1 Solvents such as benzene
are no longer being used in producing excipients.
• Many produced with Class 2 or 3.
• Eliminating or lowering solvent levels may
change quality and performance for certain
functions.
• Take advantage of calculation option.
Supplier
• Manufacturers of pharmaceutical products need certain
information about the contents of residual solvents in
drug substances or excipients in order to meet the
criteria of this general chapter.
 Only Class 3 solvents are likely to be present. Loss on drying is
less than 0.5%.
 Only Class 2 solvents X, Y,…are likely to be present. All are
below the Option 1 limit. (Here the supplier would name the
Class 2 solvents represented by X, Y, …)
 Only Class 2 solvents X, Y,…and Class 3 solvents are likely to be
present. Residual Class 2 solvents are bellow the Option 1 limit
and residual Class 3 solvents are below 0.5%.
Supplier
• Need information exchange between user
and supplier.
 However there are confidentiality concerns.
 Trust needed between two parties.
 A supplier audit may be needed, GMP concern for
regulatory department and FDA.
 Not just rely on C of A.
Establishing Exposure Limits
(Appendix 3 in the General Chapter)
• Permitted Daily Exposure (PDE) derived from the Noobserved-effect level (NOEL) in animal studies.
• For Class 1 solvents, exposure limits are determined
using a large safety factor (10,000 to 100,000)
• For Class 2 solvents, PDE was calculated from NOEL,
weight adjustments and correction factors (e.g.
extrapolating between species and accounting for
variability between individuals)
Limits of Residual Solvents
• Class 1: concentration limits, in ppm, are provided in a Table. They
should not be exceeded unless otherwise stated in the individual
monograph.
• Class 2: concentration limits are to be calculated from PDE with the
formula:
concentration (ppm)=1000 PDE/dose, where PDE is in mg/day and
dose is in g/day
A table is provided, to be used when the daily dose is 10g or less, or when
the daily dose is not known or fixed.
• Class 3: PDE is 50mg/day (“unless otherwise stated in the individual
monograph”), corresponding to a concentration of 0.5% for daily
doses of 10g or less
Limits of Residual Solvents: Class 1
• Class 1 Residual solvents (Table 1): Should not
be used in the manufacturing of drug
substances, excipients or drug products
because of unacceptable toxicities or deleterious
environmental effects of the residual solvents.
• However, if there use is unavoidable, their levels
should be restricted as shown in Table 1.
Table 1. Class 1 Residual Solvents
Solvent
Concentration Limit
(ppm)
Concern
Benzene
2
Carcinogen
Carbon tetrachloride
4
Toxic and environmental
Hazard
1,2-Dichlorothane
5
Toxic
1,1-Dichlorothane
5
Toxic
1,1,1-Trichlorothane
1500
Environmental Hazard
Limits of Residual Solvents: Class 2
• Class 2: 26 solvents
• Class 2 Residual Solvents: should be limited in drug
substances, excipients or drug products because of their
inherent toxicities.
• Their levels should be restricted as shown in Table 2.
Concentration limits vary between 50 (Methylbutylketone)
and 3880 (cyclohexane).
• When Class 2 residual solvents are used (or produced)
in the manufacturing or purification process, they should
be identified and quantified.
Table 2. Class 2 Residual Solvents
Solvent
PDE
(mg/day)
Concentration Limit
(ppm)
Acetonitrile
4.1
410
Chlorobenzene
3.6
360
Chloroform
0.6
60
Cyclohexane
38.8
3880
1,2-Dichloroethane
18.7
1870
1,2-Dimethylacetamide
10.9
1090
N,N-Dimethylformamide
8.8
880
1,4-Dioxane
3.8
380
2-Ethoxyethanol
1.6
160
Table 2. Class 2 Residual Solvents Continued…
Solvent
PDE
(mg/day)
Concentration Limit
(ppm)
Ethylene glycol
6.2
620
Formamide
2.2
220
Hexane
2.9
290
Methanol
30.0
3000
2-Methoxyethanol
0.5
50
Methylbutylketone
0.5
50
Methycyclohexane
11.8
1180
Methylene chloride
6.0
600
N-methylpyrrolidone
5.3
530
Table 2. Class 2 Residual Solvents Continued…
Solvent
PDE
(mg/day)
Concentration Limit
(ppm)
1,2-Dimethoxyethane
1.0
100
Nitromethane
0.5
50
Pyridine
2.0
200
Sulfolane
1.6
160
Tetrahydrofuran
7.2
720
Tetralin
1.0
100
Toluene
8.9
890
Trichloroethylene
0.8
80
Xylenes
21.7
2170
Limits of Residual Solvents: Class 3
• Class 3: 28 solvents
• Less toxic and of lower risk to human health
• Unless otherwise stated in the individual monograph,
PDE is NMT 50mg/day, corresponding to a concentration
limit of 5000ppm for daily doses not greater than 10g of
the product
• If the monograph allows for a concentration resulting in
more than 50mg/day, Class 3 solvents must be identified
and quantified.
Table 3. Class 3 Residual Solvents
Acetic Acid
Ethyl acetate
Methyliobutylketone
Acetone
Ethyl ether
2-Methyl-1-propanol
Anisole
Ethyl formate
Pentane
1-Butanol
Formic acid
1-Pentanol
2-Butanol
Heptane
1-Propanol
Butyl acetate
Isobutyl acetate
2--Propanol
tert-Butylmethyl ether
Isopropyl acetate
Propyl acetate
Cmene
Methyl acetate
Dimethyl sulfoxide
3-Methyl-1-butanol
Ethanol
Methylethylketone
残留溶剂控制限度的建立
• FDA要求所有在制造原料、辅料和产品时使用或产生的有机溶
剂,其残留量都必须予以检测和控制。
• 仿制药生产商可选择直接在产品中检测,若产品制造过程中均
未使用有机溶剂,亦可先检测原料、辅料的有机溶剂残留量,
检测结果若较规定值低,则产品无须进行检测,若较高,则必
须检测产品,以证实制造过程中有机溶剂的残留是否已经降到
合格标准。
• 若只有第3类的残留溶剂,则可用USP<731>干燥减重的方式
控制。
Options for Determining Levels of
Class 2 Residual Solvents
• Option 1: Components of the drug product (drug substances and
excipients) meet the concentration limits listed in Table 2, and the
daily dose does not exceed 10g.
• 在设定残留溶剂时,首先采用第一选择方法,即根据美国药典<467>
(或ICH Q3C)中标1-3所列的限度来建立标准中的溶剂限度。
• 第一选择方法以每日用药量10克为假设来计算“每日允许接触量”
(PDE),从而确定溶剂的限度。
MeOH第一选择方法最高允许值
=1000微克/毫克×PDE(毫克/日)/最高日剂量(克/日)
=(1000 ×30)微克/(10 ×1000000)微克=3000ppm
Option 2 for Determining Levels of
Class 2 Residual Solvents in Drug Products
• Option 2: At least one of the components of the drug
product exceeds the concentration limits, or the daily
dose exceeds 10g: the daily exposure to a solvent
(calculated as the sum of the components contributions)
should be less than PDE.
• 当残留溶剂含量超过美国药典<467>第一选择限度时可以
采用第二选择方法来建立残留溶剂的限度。常见的是第3
类的残留溶剂,如乙醇或异丙醇,由于其对人体相对较低
的毒性,在原料药生产中常常把它用作最后纯化工序的溶
剂,加上有些原料药具有很大的极性,生产中很难完全去
除。
乙醇含量和第二选择方法限度的计算
成份
配方中的含
量(毫克)
实际乙醇含
量(ppm)
日接触量
(毫克)
6125
30mg ×3
×0.6125%
=0.551
原料药
XXX
150×20%
=30
辅料1
无水葡萄糖结
合剂
150×76.0%
=114
100
114mg×0.01%
=0.011
辅料2
交联羧甲基纤
维素钠
150×3.0%
=4.50
无
0
辅料3
硬脂酸镁
150×1.0%
=1.50
无
0
150
6225
0.562
制剂
Option 2 for Determining Levels of
Class 2 Residual Solvents in Drug Products
• 第二选择方法以“每日允许接触量”(PDE)和实际每日最大用药
量来计算溶剂的最高允许值。残留溶剂的限度将根据这个允许值以
及实验测定数据而确定。例如,乙醇的每日允许接触量是50毫克。
因此,方法1给出的限度是5000ppm。如果某药物每日最高的配药
量是90毫克,其制剂中包含三种辅料,药品的组分和计算得出的最
高残留乙醇量列于下表中。
• 第二选择方法最高允许值
=1000 ×PDE(毫克/日)/最高日剂量(克/日)
=1000 ×50/0.090=5.56 ×105ppm
因此,原料药中的残留溶剂乙醇的控制限度可以设定为高于第一选
择方法的限度(5000ppm)。如果原料药样品的实际分析结果为
6900-7000ppm,则控制限度可以设置为不超过8000ppm.
Example 1: Option 1 and Option 2, with Acetonitrile
 PDE acetonitrile=4.1mg/day, thus Option 1 limits is 410ppm (from
Table 2).
 5.0g drug product/day. Composed of two excipients
Components
Amount in
Formulation (g)
Acetonitrile ContentLimit (ppm)
Daily Exposure
(mg)
Drug substance
0.3
800 (exceeds)
0.24
Excipient 1
0.9
400 (pass)
0.36
Excipient 2
3.8
800 (exceeds)
3.04
Excipient 3
5.0
728 (exceeds)
3.64 (PASS)
 Excipient 1 meets Option 1 limit of 410ppm/day.
 Drug Substance, excipient 2, and drug product do not meet
Option 1 limit of 410ppm/day.
 Drug product however meets Option 2 limits of 4.1 mg/day.
Example 2: Option 1 and Option 2, with Acetonitrile
 PDE acetonitrile=4.1mg/day, thus Option 1 limits is 410ppm (from
Table 2).
 5.0g drug product/day. Composed of two excipients
Components
Amount in
Formulation (g)
Acetonitrile ContentLimit (ppm)
Daily Exposure
(mg)
Drug substance
0.3
800
0.24
Excipient 1
0.9
2000
1.80
Excipient 1
3.8
800
3.04
Drug Product
5.0
1016
5.08 (FAIL)
 Drug product does not meet Option 1 or Option 2 limit.
 Manufacturer could test to see if manufacturing did reduce the
level of acetonitrile in drug product below 410ppm; if so it
passes.
原料药中残留溶剂与有机挥发性杂质的控制及其依据
•
根据原料药生产商提供的药物管理档案中原料药的合成路线,某原料药的生产
中使用过以下五种溶剂:丙酮、正己烷、甲苯、乙酸乙酯和四氢呋喃。
•
研发气相色谱测定方法对该原料药的样品进行分析,检测苯(甲苯中的一种潜
在杂质)和以上所列的五种可能的残留溶剂。结果显示,乙酸乙酯、四氢呋喃、
正己烷、甲苯和苯(源于甲苯)均未检出。然而,却在样品中检测到了一种未
知的有机挥发性杂质。
•
应用气相色谱-质谱(GC-MS)分析技术分析后确定该未知有机挥发性杂质为
亚异丙基丙酮(mesityloxide)。进一步使用亚异丙基丙酮参考标准品对样品中
的该杂质进行了定量分析并确定了其含量。
•
下表总结了该原料药样品的残留溶剂分析结果和所建立的限度。由于未检出乙
酸乙酯、四氢呋喃、正己烷、甲苯和苯,加上这些是早期合成阶段所用的溶剂
(苯除外,合成中未使用苯),因此认为没有必要在标准中对这些残留溶剂建
立控制限度进行常规控制。如果这些残留溶剂出现在原料药中,所采用的气相
色谱法将可以检测到它们,并能对其进行定量分析。另外,用不超过1000ppm
的限度来分别控制原料药中第三类溶剂丙酮和乙酸乙酯的残留量,此限度低于
ICH指南中的允许限度,与供应商的限度也一致,因而是合理的。
原料药中残留溶剂与有机挥发性杂质的控制及其依据
己烷
(ppm)
丙酮
(ppm)
乙酸乙酯
(ppm)
甲苯
(ppm)
苯
(ppm)
四氢呋喃
(ppm)
异亚丙基丙
酮(ppm)
1112
ND
142
ND
ND
ND
ND
21
1113
ND
182
ND
ND
ND
ND
12
1114
ND
133
ND
ND
ND
ND
30
1115
ND
705
ND
ND
ND
ND
178
1116
ND
696
ND
ND
ND
ND
147
ICH分类
2
3
3
2
1
2
NA
ICH限度
290
5000
5000
890
2
720
NA
康乐化学公
司限度
NA
5000
5000
NA
NA
NA
NA
民药公司建
议的限度
NA
1000
1000
NA
NA
NA
200
定量限LOQ
15
100
50
40
LOD:0.8
25
2.5
残留溶剂或
有机挥发性
杂质
样品
检测
结果
(批号)
练习-原料药中残留溶剂控制限度的设置和论证
残留溶剂或有机挥发性杂质
二氯甲烷
(ppm)
异丙醇
IPA(ppm)
乙酸乙酯
(ppm)
四氢呋喃
THF (ppm)
1112
78
800
ND
ND
1113
89
790
ND
ND
1114
90
670
ND
ND
ICH分类
2
3
3
2
ICH限度
600
5000
5000
720
康乐化学公司限度
600
3000
1000
NA
60
100
50
25
样品检测
结果(批号)
民药公司建议的限度
定量限LOQ
原料药中残留溶剂与有机挥发性杂质的控制及其依据
•
亚异丙基丙酮(mesityl oxide):是从丙酮经过羟醛缩合反应而产生的一种有机挥发
性杂质。
•
由于USP和ICH都没有对此杂质设定控制限度,其毒理学数据也不完全,建议应
用美国FDA在2008年12月出版的产业指导中为基因毒素或可能致癌杂质的限度
(1.5微克/日)来设置控制限度。该药的每日最高剂量为10毫克,可认为设置不
超过100ppm(0.01%)的限度恰当地控制了该原料药中的这种有机挥发性杂质
(参见下面的计算公式)
1.5微克/日
亚异丙基丙酮控制限度=———————————— × 106=150ppm
10毫克/日× 103毫克/毫克
•
所用的气相色谱分析方法已经过验证,其准确度、精密度、线性、灵敏度、可
靠性、耐用性和选择性均适用于这些残留溶剂和有机挥发性杂质的常规检测控
制的要求。
原料药与成品药中具有基因毒性和致癌性的杂质
•
具有基因毒性和致癌性基因毒性的杂质:可以直接与DNA结合
或通过影响参与DNA复制的酶,间接地导致DNA损伤。由于快
速分裂的细胞在积极合成新的DNA,所以它们对基因毒性
(Genotoxic)杂质特别敏感,甚至可能因受损太重而导致凋亡。
•
欧洲医药局(European Medicine Agency, 简称EMEA,
Committee for Medical Products for Human Use, 简称CHMP)
在2006年就首先颁布了《基因毒性杂质限度指南》,并于2007
年1月1日起正式实施。
•
FDA于2008年12月发表了控制这类杂质的指导原则(草案)。
对任何可疑的但未知具体毒理的基因毒性杂质,基于具体药物
的每天最大摄入量以上两个指导原则草案都推荐1.5毫克/日作为
控制限度。
原料药与成品药中具有基因毒性和致癌性的杂质
•
毒性关注限(TTC: Threshold of Toxicological Concern)是由FDA下属的食
物安全和营养中心为“与食物接触的物质”所提出的一个规定限度。
•
TTC是通过对700多种致癌物引发肿瘤超过50%概率的致癌基剂量进行简单
的线性外推而得。对食物而言,TTC值等于1.5微克/日相当于人的生存期中
(平均以70年计)百万分之一患癌症的概率。也就是所谓的有效安全剂量
(VSD:Virtual Safe Dose)。
•
对药物而言,1.5微克/日相当于人十万分之一的致癌概率,相对于目前人类
四分之一的“自然”患癌症的比例,一般认为是可以接受的。
•
因为服药是一个有意识的治疗过程,副作用总是伴随着药物的治疗效用,
而药物的使用期相对于人类的生存期是短暂的,所以除了极少数的基因毒
性杂质,这一标准是可以接受的。在某些极端情况下,如生命受到即时威
胁或极短的使用期限,较高的限度也是可以接受的。对于比终身服药短的
临床试验,可以接受高数倍的限制标准。
•
许多基因毒性杂质的化学结构中具有某些特定的官能团称为示警结构
(Alerting Structure)。这些官能团包括硝基和亚硝基化合物,环氧化物,
磺酸酯,亚磺酸酯,氯化物等。
具有基因毒性和致癌性的杂质的论证和控制
 在康乐化学有限公司生产的某原料药的筛选试验中发现一个未知峰。经GCMS鉴定和标准品的比较,证实为2-氯丙烷。从化学角度来看,2-氯丙烷可由
生产过程中异丙醇和盐酸的耦合反应形成。
 2-氯丙烷是一种已知的具有基因毒性的烷基化试剂。在最近几年,由于这种
类型化合物的基因毒性或致癌性,该化合物在药品中的含量控制已受到相当
的重视。
 FDA在2008年12月公布的制药业指南草案中对具有基因毒性的杂质建议了1.5
微克/日的合理限度。低于该限度的基因毒性杂质无须进一步论证。根据该原
料药的最高日用量0.6毫克/日和1.5微克/日的限度,可计算出2-氯丙烷的允许
限度为不超过2500ppm。因此,2-氯丙烷控制限度建议为100ppm。该限度也
与原料药厂商的内部限度一致。民药集团和原料厂商的3个批号分析结果显示
“未检出”,说明符合要求。
1.5微克/日
2-氯丙烷控制限度=——————————————×106=2500ppm
0.6毫克/日×103微克/毫克
谢谢大家!