Environmental Deaths and Economic Growth

Download Report

Transcript Environmental Deaths and Economic Growth

Environmental Mortality
and Long-Run Growth
Ulla Lehmijoki and Elena
Rovenskaya
2009
Outdoor air pollution is the greatest
environmental risk to human health
currently.
•
•
•
•
•
1930 Meuse Valley, Belgium: 60 deaths
1952 London: 4 000 deaths
1973 Club of Rome
2002 East Asian Brown Cloud
2004 WHO and Cafe: 350 000 deaths EU, lifeexpectancy loss 6 monts-2 years, 3 618 700 lost
life years
Risk groups and diseases
•
•
•
•
•
•
Unborn and infants
Elderly adults
Respiratory and cardiovascular diseases
Asthma
Lung cancer
Skin cancer
Pollutants
•
•
•
•
Ozone (ground level)
Nitrogen dioxine
Particulate matter (indicator)
Particulate matter, PM, consists of solid
airborne particles of varying size, chemical
composition, mainly generated by energy
combustion (mobile or fixed site), often also from
long-distance sources. PM and PM consist
particles with maximal diameters 2.5 and 10 μ,
respectively.
2.5
10
Sl
lan
ov
e
nia
n
d
lt a
ed
e
Po
y
g
ou
r
It a
l
ary
Ma
mb
Sw
Lu
xe
Hu
ng
ny
e
ia
nc
Ge
rm
a
Fr
a
Es
ton
k
ar
De
nm
s
ia
str
pru
Cy
Au
Premature deaths in 2000
80000
70000
60000
50000
40000
30000
20000
10000
0
Sl
ov
e
nia
n
nd
lt a
ed
e
Po
la
y
g
ou
r
It a
l
ary
Ma
mb
Sw
Lu
xe
Hu
ng
ny
e
ia
nc
ma
Ge
r
Fr
a
Es
ton
k
ar
De
nm
s
ia
str
pru
Cy
Au
Death rate in 2000
0,0014
0,0012
0,001
0,0008
0,0006
0,0004
0,0002
0
Areal death rates in 2000
0,001
0,0009
0,0008
0,0007
0,0006
0,0005
0,0004
0,0003
0,0002
0,0001
0
East
North
South
West
Production, emissions, deaths
• All emissions E are generated as byproducts of production:
E = g(Y) = g(AKα)
• The EKC path assumed:
g (Y )  0, g ' (Y   )  0, g ' (Y )  0
Ympäristökuolleisuus heijastuu
västönkasvuun
L / L  n
t
L(t )  exp  nE ( )d
0
Objective and constraint
Max

U   u[C (t ) / L(t )]* L(t )e  t dt
0
t

 C (t )1
  u
1
0 
  0 { n[ E ( )]}d
dt
e

s.t.
K  AK   K , K (0)  K 0
Solution
• Optimal consumption:

C 1 ng AK  1  C


 1


 

AK


K


AK






n



C     n  1  





• Phase lines:

C
 1  
  n
 1


0C 
AK


K


AK






n


 1


C
 
n g AK


K  0  C  AK  K


Phase diagram
Estimation strategy
•
•
•
E = g(Y) = g(GDP)
EKC needs time-series for E and GDP
E available only for 2000
1. Estimating in a cross-section of
countries
2. Generalized to a country-specific level
Emission intensity of production E/GDP falls as a function
of GDP per capita
Parameters
Aggregate results (14 countries,
2000-2020)
• Emissions decrease from 1097 kilotons
899 kilotons
• Annual deaths decrease from 220 225
persons to 182 857 persons
• Total deaths from 2000 to 2020 extends to
4 298 419 persons
Country-level results